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Chapter 1

Introduction

GLPK (GNU Linear Programming Kit) is a set of routines written in the
ANSI C programming language and organized in the form of a callable
library. It is intended for solving linear programming (LP), mixed integer
programming (MIP), and other related problems.

1.1 LP problem

GLPK assumes the following formulation of linear programming (LP) prob-
lem:

minimize (or maximize)

z = c1xm+1 + c2xm+2 + . . . + cnxm+n + c0 (1.1)

subject to linear constraints

x1 = a11xm+1 + a12xm+2 + . . . + a1nxm+n

x2 = a21xm+1 + a22xm+2 + . . . + a2nxm+n

. . . . . . . . . . . . . .
xm = am1xm+1 + am2xm+2 + . . . + amnxm+n

(1.2)

and bounds of variables

l1 ≤ x1 ≤ u1

l2 ≤ x2 ≤ u2

. . . . .
lm+n ≤ xm+n ≤ um+n

(1.3)
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where: x1, x2, . . . , xm are auxiliary variables; xm+1, xm+2, . . . , xm+n are
structural variables; z is the objective function; c1, c2, . . . , cn are objec-
tive coefficients; c0 is the constant term (“shift”) of the objective function;
a11, a12, . . . , amn are constraint coefficients; l1, l2, . . . , lm+n are lower bounds
of variables; u1, u2, . . . , um+n are upper bounds of variables.

Auxiliary variables are also called rows, because they correspond to rows
of the constraint matrix (i.e. a matrix built of the constraint coefficients).
Similarly, structural variables are also called columns, because they corre-
spond to columns of the constraint matrix.

Bounds of variables can be finite as well as infinite. Besides, lower and
upper bounds can be equal to each other. Thus, the following types of
variables are possible:

Bounds of variable Type of variable
−∞ < xk < +∞ Free (unbounded) variable

lk ≤ xk < +∞ Variable with lower bound
−∞ < xk ≤ uk Variable with upper bound

lk ≤ xk ≤ uk Double-bounded variable
lk = xk = uk Fixed variable

Note that the types of variables shown above are applicable to structural as
well as to auxiliary variables.

To solve the LP problem (1.1)—(1.3) is to find such values of all struc-
tural and auxiliary variables, which:

• satisfy to all the linear constraints (1.2), and
• are within their bounds (1.3), and
• provide the smallest (in case of minimization) or the largest (in case

of maximization) value of the objective function (1.1).

1.2 MIP problem

Mixed integer linear programming (MIP) problem is LP problem in which
some variables are additionally required to be integer.

GLPK assumes that MIP problem has the same formulation as ordi-
nary (pure) LP problem (1.1)—(1.3), i.e. includes auxiliary and structural
variables, which may have lower and/or upper bounds. However, in case of
MIP problem some variables may be required to be integer. This additional
constraint means that a value of each integer variable must be only integer
number. (Should note that GLPK allows only structural variables to be of
integer kind.)
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1.3 Using the package

1.3.1 Brief example

In order to understand what GLPK is from the user’s standpoint, consider
the following simple LP problem:

maximize
z = 10x1 + 6x2 + 4x3

subject to
x1 + x2 + x3 ≤ 100

10x1 + 4x2 + 5x3 ≤ 600
2x1 + 2x2 + 6x3 ≤ 300

where all variables are non-negative

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

At first this LP problem should be transformed to the standard form
(1.1)—(1.3). This can be easily done by introducing auxiliary variables,
by one for each original inequality constraint. Thus, the problem can be
reformulated as follows:

maximize
z = 10x1 + 6x2 + 4x3

subject to
p = x1 + x2 + x3

q = 10x1 + 4x2 + 5x3

r = 2x1 + 2x2 + 6x3

and bounds of variables

−∞ < p ≤ 100 0 ≤ x1 < +∞
−∞ < q ≤ 600 0 ≤ x2 < +∞
−∞ < r ≤ 300 0 ≤ x3 < +∞

where p, q, r are auxiliary variables (rows), and x1, x2, x3 are structural vari-
ables (columns).

The example C program shown below uses GLPK API routines in order
to solve this LP problem.1

1If you just need to solve LP or MIP instance, you may write it in MPS or CPLEX LP
format and then use the GLPK stand-alone solver to obtain a solution. This is much less
time-consuming than programming in C with GLPK API routines.
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/* sample.c */

#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

int main(void)
{ glp_prob *lp;

int ia[1+1000], ja[1+1000];
double ar[1+1000], z, x1, x2, x3;

s1: lp = glp_create_prob();
s2: glp_set_prob_name(lp, "sample");
s3: glp_set_obj_dir(lp, GLP_MAX);
s4: glp_add_rows(lp, 3);
s5: glp_set_row_name(lp, 1, "p");
s6: glp_set_row_bnds(lp, 1, GLP_UP, 0.0, 100.0);
s7: glp_set_row_name(lp, 2, "q");
s8: glp_set_row_bnds(lp, 2, GLP_UP, 0.0, 600.0);
s9: glp_set_row_name(lp, 3, "r");
s10: glp_set_row_bnds(lp, 3, GLP_UP, 0.0, 300.0);
s11: glp_add_cols(lp, 3);
s12: glp_set_col_name(lp, 1, "x1");
s13: glp_set_col_bnds(lp, 1, GLP_LO, 0.0, 0.0);
s14: glp_set_obj_coef(lp, 1, 10.0);
s15: glp_set_col_name(lp, 2, "x2");
s16: glp_set_col_bnds(lp, 2, GLP_LO, 0.0, 0.0);
s17: glp_set_obj_coef(lp, 2, 6.0);
s18: glp_set_col_name(lp, 3, "x3");
s19: glp_set_col_bnds(lp, 3, GLP_LO, 0.0, 0.0);
s20: glp_set_obj_coef(lp, 3, 4.0);
s21: ia[1] = 1, ja[1] = 1, ar[1] = 1.0; /* a[1,1] = 1 */
s22: ia[2] = 1, ja[2] = 2, ar[2] = 1.0; /* a[1,2] = 1 */
s23: ia[3] = 1, ja[3] = 3, ar[3] = 1.0; /* a[1,3] = 1 */
s24: ia[4] = 2, ja[4] = 1, ar[4] = 10.0; /* a[2,1] = 10 */
s25: ia[5] = 3, ja[5] = 1, ar[5] = 2.0; /* a[3,1] = 2 */
s26: ia[6] = 2, ja[6] = 2, ar[6] = 4.0; /* a[2,2] = 4 */
s27: ia[7] = 3, ja[7] = 2, ar[7] = 2.0; /* a[3,2] = 2 */
s28: ia[8] = 2, ja[8] = 3, ar[8] = 5.0; /* a[2,3] = 5 */
s29: ia[9] = 3, ja[9] = 3, ar[9] = 6.0; /* a[3,3] = 6 */
s30: glp_load_matrix(lp, 9, ia, ja, ar);
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s31: glp_simplex(lp, NULL);
s32: z = glp_get_obj_val(lp);
s33: x1 = glp_get_col_prim(lp, 1);
s34: x2 = glp_get_col_prim(lp, 2);
s35: x3 = glp_get_col_prim(lp, 3);
s36: printf("\nz = %g; x1 = %g; x2 = %g; x3 = %g\n",

z, x1, x2, x3);
s37: glp_delete_prob(lp);

return 0;
}

/* eof */

The statement s1 creates a problem object. Being created the object is
initially empty. The statement s2 assigns a symbolic name to the problem
object.

The statement s3 calls the routine glp_set_obj_dir in order to set the
optimization direction flag, where GLP_MAX means maximization.

The statement s4 adds three rows to the problem object.
The statement s5 assigns the symbolic name ‘p’ to the first row, and

the statement s6 sets the type and bounds of the first row, where GLP_UP
means that the row has an upper bound. The statements s7, s8, s9, s10
are used in the same way in order to assign the symbolic names ‘q’ and ‘r’
to the second and third rows and set their types and bounds.

The statement s11 adds three columns to the problem object.
The statement s12 assigns the symbolic name ‘x1’ to the first column,

the statement s13 sets the type and bounds of the first column, where
GLP_LO means that the column has an lower bound, and the statement s14
sets the objective coefficient for the first column. The statements s15—s20
are used in the same way in order to assign the symbolic names ‘x2’ and ‘x3’
to the second and third columns and set their types, bounds, and objective
coefficients.

The statements s21—s29 prepare non-zero elements of the constraint
matrix (i.e. constraint coefficients). Row indices of each element are stored
in the array ia, column indices are stored in the array ja, and numerical
values of corresponding elements are stored in the array ar. Then the state-
ment s30 calls the routine glp_load_matrix, which loads information from
these three arrays into the problem object.

Now all data have been entered into the problem object, and therefore
the statement s31 calls the routine glp_simplex, which is a driver to the
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simplex method, in order to solve the LP problem. This routine finds an
optimal solution and stores all relevant information back into the problem
object.

The statement s32 obtains a computed value of the objective function,
and the statements s33—s35 obtain computed values of structural variables
(columns), which correspond to the optimal basic solution found by the
solver.

The statement s36 writes the optimal solution to the standard output.
The printout may look like follows:

* 0: objval = 0.000000000e+00 infeas = 0.000000000e+00 (0)

* 2: objval = 7.333333333e+02 infeas = 0.000000000e+00 (0)

OPTIMAL SOLUTION FOUND

z = 733.333; x1 = 33.3333; x2 = 66.6667; x3 = 0

Finally, the statement s37 calls the routine glp_delete_prob, which
frees all the memory allocated to the problem object.

1.3.2 Compiling

The GLPK package has the only header file glpk.h, which should be avail-
able on compiling a C (or C++) program using GLPK API routines.

If the header file is installed in the default location /usr/local/include,
the following typical command may be used to compile, say, the example C
program described above with the GNU C compiler:

$ gcc -c sample.c

If glpk.h is not in the default location, the corresponding directory
containing it should be made known to the C compiler through -I option,
for example:

$ gcc -I/foo/bar/glpk-4.15/include -c sample.c

In any case the compilation results in an object file sample.o.

1.3.3 Linking

The GLPK library is a single file libglpk.a. (On systems which sup-
port shared libraries there may be also a shared version of the library
libglpk.so.)
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If the library is installed in the default location /usr/local/lib, the
following typical command may be used to link, say, the example C program
described above against with the library:

$ gcc sample.o -lglpk -lm

If the GLPK library is not in the default location, the corresponding
directory containing it should be made known to the linker through -L
option, for example:

$ gcc -L/foo/bar/glpk-4.15 sample.o -lglpk -lm

Depending on configuration of the package linking against with the
GLPK library may require the following optional libraries:

-lgmp the GNU MP bignum library;
-lz the zlib data compression library;
-lltdl the GNU ltdl shared support library.

in which case corresponding libraries should be also made known to the
linker, for example:

$ gcc sample.o -lglpk -lz -lltdl -lm

For more details about configuration options of the GLPK package see
Appendix A, page 182.
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Chapter 2

Basic API Routines

This chapter describes GLPK API routines intended for using in application
programs.

Library header

All GLPK API data types and routines are defined in the header file glpk.h.
It should be included in all source files which use GLPK API, either directly
or indirectly through some other header file as follows:

#include <glpk.h>

Error handling

If some GLPK API routine detects erroneous or incorrect data passed by
the application program, it writes appropriate diagnostic messages to the
terminal and then abnormally terminates the application program. In most
practical cases this allows to simplify programming by avoiding numerous
checks of return codes. Thus, in order to prevent crashing the application
program should check all data, which are suspected to be incorrect, before
calling GLPK API routines.

Should note that this kind of error handling is used only in cases of
incorrect data passed by the application program. If, for example, the ap-
plication program calls some GLPK API routine to read data from an input
file and these data are incorrect, the GLPK API routine reports about error
in the usual way by means of the return code.
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Thread safety

Currently GLPK API routines are non-reentrant and therefore cannot be
used in multi-threaded programs.

Array indexing

Normally all GLPK API routines start array indexing from 1, not from 0
(except the specially stipulated cases). This means, for example, that if some
vector x of the length n is passed as an array to some GLPK API routine,
the latter expects vector components to be placed in locations x[1], x[2],
. . . , x[n], and the location x[0] normally is not used.

In order to avoid indexing errors it is most convenient and most reliable
to declare the array x as follows:

double x[1+n];

or to allocate it as follows:

double *x;
. . .
x = calloc(1+n, sizeof(double));

In both cases one extra location x[0] is reserved that allows passing the
array to GLPK routines in a usual way.

2.1 Problem object

All GLPK API routines deal with so called problem object, which is a pro-
gram object of type glp_prob and intended to represent a particular LP or
MIP instance.

The type glp_prob is a data structure declared in the header file glpk.h
as follows:

typedef struct { ... } glp_prob;

Problem objects (i.e. program objects of the glp_prob type) are allo-
cated and managed internally by the GLPK API routines. The application
program should never use any members of the glp_prob structure directly
and should deal only with pointers to these objects (that is, glp_prob *
values).
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The problem object consists of five segments, which are:
• problem segment,
• basis segment,
• interior point segment,
• MIP segment, and
• control parameters and statistics segment.

Problem segment

The problem segment contains original LP/MIP data, which corresponds to
the problem formulation (1.1)—(1.3) (see Section 1.1, page 11). It includes
the following components:

• rows (auxiliary variables),
• columns (structural variables),
• objective function, and
• constraint matrix.
Rows and columns have the same set of the following attributes:
• ordinal number,
• symbolic name (1 up to 255 arbitrary graphic characters),
• type (free, lower bound, upper bound, double bound, fixed),
• numerical values of lower and upper bounds,
• scale factor.
Ordinal numbers are intended for referencing rows and columns. Row

ordinal numbers are integers 1, 2, . . . ,m, and column ordinal numbers are
integers 1, 2, . . . , n, where m and n are, respectively, the current number of
rows and columns in the problem object.

Symbolic names are intended for informational purposes. They also can
be used for referencing rows and columns.

Types and bounds of rows (auxiliary variables) and columns (structural
variables) are explained above (see Section 1.1, page 11).

Scale factors are used internally for scaling rows and columns of the
constraint matrix.

Information about the objective function includes numerical values of
objective coefficients and a flag, which defines the optimization direction
(i.e. minimization or maximization).

The constraint matrix is a m× n rectangular matrix built of constraint
coefficients aij , which defines the system of linear constraints (1.2) (see Sec-
tion 1.1, page 11). This matrix is stored in the problem object in both
row-wise and column-wise sparse formats.
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Once the problem object has been created, the application program can
access and modify any components of the problem segment in arbitrary
order.

Basis segment

The basis segment of the problem object keeps information related to the
current basic solution. It includes:

• row and column statuses,
• basic solution statuses,
• factorization of the current basis matrix, and
• basic solution components.
The row and column statuses define which rows and columns are basic

and which are non-basic. These statuses may be assigned either by the
application program of by some API routines. Note that these statuses are
always defined independently on whether the corresponding basis is valid or
not.

The basic solution statuses include the primal status and the dual sta-
tus, which are set by the simplex-based solver once the problem has been
solved. The primal status shows whether a primal basic solution is feasible,
infeasible, or undefined. The dual status shows the same for a dual basic
solution.

The factorization of the basis matrix is some factorized form (like LU-
factorization) of the current basis matrix (defined by the current row and
column statuses). The factorization is used by the simplex-based solver
and kept when the solver terminates the search. This feature allows ef-
ficiently reoptimizing the problem after some modifications (for example,
after changing some bounds or objective coefficients). It also allows per-
forming the post-optimal analysis (for example, computing components of
the simplex table, etc.).

The basic solution components include primal and dual values of all aux-
iliary and structural variables for the most recently obtained basic solution.

Interior point segment

The interior point segment is automatically allocated after the problem has
been solved using the interior point solver. It contains interior point solution
components, which include the solution status, and primal and dual values
of all auxiliary and structural variables.
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MIP segment

The MIP segment is used only for MIP problems. This segment includes:
• column kinds,
• MIP solution status, and
• MIP solution components.
The column kinds define which columns (i.e. structural variables) are

integer and which are continuous.
The MIP solution status is set by the MIP solver and shows whether a

MIP solution is integer optimal, integer feasible (non-optimal), or undefined.
The MIP solution components are computed by the MIP solver and in-

clude primal values of all auxiliary and structural variables for the most
recently obtained MIP solution.

Note that in case of MIP problem the basis segment corresponds to the
optimal solution of LP relaxation, which is also available to the application
program.

Currently the search tree is not kept in the MIP segment. Therefore if
the search has been terminated, it cannot be continued.
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2.2 Problem creating and modifying routines

2.2.1 glp create prob—create problem object

Synopsis

glp_prob *glp_create_prob(void);

Description

The routine glp_create_prob creates a new problem object, which initially
is “empty”, i.e. has no rows and columns.

Returns

The routine returns a pointer to the created object, which should be used
in any subsequent operations on this object.

2.2.2 glp set prob name—assign (change) problem name

Synopsis

void glp_set_prob_name(glp_prob *lp, const char *name);

Description

The routine glp_set_prob_name assigns a given symbolic name (1 up to 255
characters) to the specified problem object.

If the parameter name is NULL or empty string, the routine erases an
existing symbolic name of the problem object.

2.2.3 glp set obj name—assign (change) objective function
name

Synopsis

void glp_set_obj_name(glp_prob *lp, const char *name);

Description

The routine glp_set_obj_name assigns a given symbolic name (1 up to 255
characters) to the objective function of the specified problem object.

If the parameter name is NULL or empty string, the routine erases an
existing symbolic name of the objective function.

23



2.2.4 glp set obj dir—set (change) optimization direction
flag

Synopsis

void glp_set_obj_dir(glp_prob *lp, int dir);

Description

The routine glp_set_obj_dir sets (changes) the optimization direction flag
(i.e. “sense” of the objective function) as specified by the parameter dir:

GLP_MIN minimization;
GLP_MAX maximization.

(Note that by default the problem is minimization.)

2.2.5 glp add rows—add new rows to problem object

Synopsis

int glp_add_rows(glp_prob *lp, int nrs);

Description

The routine glp_add_rows adds nrs rows (constraints) to the specified prob-
lem object. New rows are always added to the end of the row list, so the
ordinal numbers of existing rows are not changed.

Being added each new row is initially free (unbounded) and has empty
list of the constraint coefficients.

Returns

The routine glp_add_rows returns the ordinal number of the first new row
added to the problem object.
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2.2.6 glp add cols—add new columns to problem object

Synopsis

int glp_add_cols(glp_prob *lp, int ncs);

Description

The routine glp_add_cols adds ncs columns (structural variables) to the
specified problem object. New columns are always added to the end of the
column list, so the ordinal numbers of existing columns are not changed.

Being added each new column is initially fixed at zero and has empty
list of the constraint coefficients.

Returns

The routine glp_add_cols returns the ordinal number of the first new col-
umn added to the problem object.

2.2.7 glp set row name—assign (change) row name

Synopsis

void glp_set_row_name(glp_prob *lp, int i, const char *name);

Description

The routine glp_set_row_name assigns a given symbolic name (1 up to 255
characters) to i-th row (auxiliary variable) of the specified problem object.

If the parameter name is NULL or empty string, the routine erases an
existing name of i-th row.

2.2.8 glp set col name—assign (change) column name

Synopsis

void glp_set_col_name(glp_prob *lp, int j, const char *name);

Description

The routine glp_set_col_name assigns a given symbolic name (1 up to 255
characters) to j-th column (structural variable) of the specified problem
object.
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If the parameter name is NULL or empty string, the routine erases an
existing name of j-th column.

2.2.9 glp set row bnds—set (change) row bounds

Synopsis

void glp_set_row_bnds(glp_prob *lp, int i, int type,
double lb, double ub);

Description

The routine glp_set_row_bnds sets (changes) the type and bounds of i-th
row (auxiliary variable) of the specified problem object.

The parameters type, lb, and ub specify the type, lower bound, and
upper bound, respectively, as follows:

Type Bounds Comment
GLP_FR −∞ < x < +∞ Free (unbounded) variable
GLP_LO lb ≤ x < +∞ Variable with lower bound
GLP_UP −∞ < x ≤ ub Variable with upper bound
GLP_DB lb ≤ x ≤ ub Double-bounded variable
GLP_FX lb = x = ub Fixed variable

where x is the auxiliary variable associated with i-th row.
If the row has no lower bound, the parameter lb is ignored. If the row

has no upper bound, the parameter ub is ignored. If the row is an equality
constraint (i.e. the corresponding auxiliary variable is of fixed type), only
the parameter lb is used while the parameter ub is ignored.

Being added to the problem object each row is initially free, i.e. its type
is GLP_FR.
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2.2.10 glp set col bnds—set (change) column bounds

Synopsis

void glp_set_col_bnds(glp_prob *lp, int j, int type,
double lb, double ub);

Description

The routine glp_set_col_bnds sets (changes) the type and bounds of j-th
column (structural variable) of the specified problem object.

The parameters type, lb, and ub specify the type, lower bound, and
upper bound, respectively, as follows:

Type Bounds Comment
GLP_FR −∞ < x < +∞ Free (unbounded) variable
GLP_LO lb ≤ x < +∞ Variable with lower bound
GLP_UP −∞ < x ≤ ub Variable with upper bound
GLP_DB lb ≤ x ≤ ub Double-bounded variable
GLP_FX lb = x = ub Fixed variable

where x is the structural variable associated with j-th column.
If the column has no lower bound, the parameter lb is ignored. If the

column has no upper bound, the parameter ub is ignored. If the column
is of fixed type, only the parameter lb is used while the parameter ub is
ignored.

Being added to the problem object each column is initially fixed at zero,
i.e. its type is GLP_FX and both bounds are 0.

2.2.11 glp set obj coef—set (change) objective coefficient or
constant term

Synopsis

void glp_set_obj_coef(glp_prob *lp, int j, double coef);

Description

The routine glp_set_obj_coef sets (changes) the objective coefficient at
j-th column (structural variable). A new value of the objective coefficient
is specified by the parameter coef.

If the parameter j is 0, the routine sets (changes) the constant term
(“shift”) of the objective function.
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2.2.12 glp set mat row—set (replace) row of the constraint
matrix

Synopsis

void glp_set_mat_row(glp_prob *lp, int i, int len,
const int ind[], const double val[]);

Description

The routine glp_set_mat_row stores (replaces) the contents of i-th row of
the constraint matrix of the specified problem object.

Column indices and numerical values of new row elements must be placed
in locations ind[1], . . . , ind[len] and val[1], . . . , val[len], respectively,
where 0 ≤ len ≤ n is the new length of i-th row, n is the current number
of columns in the problem object. Elements with identical column indices
are not allowed. Zero elements are allowed, but they are not stored in the
constraint matrix.

If the parameter len is 0, the parameters ind and/or val can be specified
as NULL.

2.2.13 glp set mat col—set (replace) column of the constr-
aint matrix

Synopsis

void glp_set_mat_col(glp_prob *lp, int j, int len,
const int ind[], const double val[]);

Description

The routine glp_set_mat_col stores (replaces) the contents of j-th column
of the constraint matrix of the specified problem object.

Row indices and numerical values of new column elements must be placed
in locations ind[1], . . . , ind[len] and val[1], . . . , val[len], respectively,
where 0 ≤ len ≤ m is the new length of j-th column, m is the current
number of rows in the problem object. Elements with identical row indices
are not allowed. Zero elements are allowed, but they are not stored in the
constraint matrix.

If the parameter len is 0, the parameters ind and/or val can be specified
as NULL.
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2.2.14 glp load matrix—load (replace) the whole constraint
matrix

Synopsis

void glp_load_matrix(glp_prob *lp, int ne, const int ia[],
const int ja[], const double ar[]);

Description

The routine glp_load_matrix loads the constraint matrix passed in the
arrays ia, ja, and ar into the specified problem object. Before loading the
current contents of the constraint matrix is destroyed.

Constraint coefficients (elements of the constraint matrix) must be spec-
ified as triplets (ia[k], ja[k], ar[k]) for k = 1, . . . , ne, where ia[k] is
the row index, ja[k] is the column index, and ar[k] is a numeric value of
corresponding constraint coefficient. The parameter ne specifies the total
number of (non-zero) elements in the matrix to be loaded. Coefficients with
identical indices are not allowed. Zero coefficients are allowed, however, they
are not stored in the constraint matrix.

If the parameter ne is 0, the parameters ia, ja, and/or ar can be spec-
ified as NULL.

2.2.15 glp del rows—delete rows from problem object

Synopsis

void glp_del_rows(glp_prob *lp, int nrs, const int num[]);

Description

The routine glp_del_rows deletes rows from the specified problem ob-
ject. Ordinal numbers of rows to be deleted should be placed in locations
num[1], . . . , num[nrs], where nrs > 0.

Note that deleting rows involves changing ordinal numbers of other rows
remaining in the problem object. New ordinal numbers of the remaining
rows are assigned under the assumption that the original order of rows is
not changed. Let, for example, before deletion there be five rows a, b, c, d,
e with ordinal numbers 1, 2, 3, 4, 5, and let rows b and d have been deleted.
Then after deletion the remaining rows a, c, e are assigned new oridinal
numbers 1, 2, 3.
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2.2.16 glp del cols—delete columns from problem object

Synopsis

void glp_del_cols(glp_prob *lp, int ncs, const int num[]);

Description

The routine glp_del_cols deletes columns from the specified problem ob-
ject. Ordinal numbers of columns to be deleted should be placed in locations
num[1], . . . , num[ncs], where ncs > 0.

Note that deleting columns involves changing ordinal numbers of other
columns remaining in the problem object. New ordinal numbers of the
remaining columns are assigned under the assumption that the original order
of columns is not changed. Let, for example, before deletion there be six
columns p, q, r, s, t, u with ordinal numbers 1, 2, 3, 4, 5, 6, and let columns
p, q, s have been deleted. Then after deletion the remaining columns r, t, u
are assigned new ordinal numbers 1, 2, 3.

2.2.17 glp copy prob—copy problem object content

Synopsis

void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names);

Description

The routine glp_copy_prob copies the content of the problem object prob
to the problem object dest.

The parameter names is a flag. If it is GLP_ON, the routine also copies all
symbolic names; otherwise, if it is GLP_OFF, no symbolic names are copied.

2.2.18 glp erase prob—erase problem object content

Synopsis

void glp_erase_prob(glp_prob *lp);

Description

The routine glp_erase_prob erases the content of the specified problem
object. The effect of this operation is the same as if the problem object
would be deleted with the routine glp_delete_prob and then created anew

30



with the routine glp_create_prob, with the only exception that the handle
(pointer) to the problem object remains valid.

2.2.19 glp delete prob—delete problem object

Synopsis

void glp_delete_prob(glp_prob *lp);

Description

The routine glp_delete_prob deletes a problem object, which the param-
eter lp points to, freeing all the memory allocated to this object.
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2.3 Problem retrieving routines

2.3.1 glp get prob name—retrieve problem name

Synopsis

const char *glp_get_prob_name(glp_prob *lp);

Returns

The routine glp_get_prob_name returns a pointer to an internal buffer,
which contains symbolic name of the problem. However, if the problem has
no assigned name, the routine returns NULL.

2.3.2 glp get obj name—retrieve objective function name

Synopsis

const char *glp_get_obj_name(glp_prob *lp);

Returns

The routine glp_get_obj_name returns a pointer to an internal buffer, which
contains symbolic name assigned to the objective function. However, if the
objective function has no assigned name, the routine returns NULL.

2.3.3 glp get obj dir—retrieve optimization direction flag

Synopsis

int glp_get_obj_dir(glp_prob *lp);

Returns

The routine glp_get_obj_dir returns the optimization direction flag (i.e.
“sense” of the objective function):

GLP_MIN minimization;
GLP_MAX maximization.
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2.3.4 glp get num rows—retrieve number of rows

Synopsis

int glp_get_num_rows(glp_prob *lp);

Returns

The routine glp_get_num_rows returns the current number of rows in the
specified problem object.

2.3.5 glp get num cols—retrieve number of columns

Synopsis

int glp_get_num_cols(glp_prob *lp);

Returns

The routine glp_get_num_cols returns the current number of columns the
specified problem object.

2.3.6 glp get row name—retrieve row name

Synopsis

const char *glp_get_row_name(glp_prob *lp, int i);

Returns

The routine glp_get_row_name returns a pointer to an internal buffer, which
contains a symbolic name assigned to i-th row. However, if the row has no
assigned name, the routine returns NULL.

2.3.7 glp get col name—retrieve column name

Synopsis

const char *glp_get_col_name(glp_prob *lp, int j);

Returns

The routine glp_get_col_name returns a pointer to an internal buffer, which
contains a symbolic name assigned to j-th column. However, if the column
has no assigned name, the routine returns NULL.
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2.3.8 glp get row type—retrieve row type

Synopsis

int glp_get_row_type(glp_prob *lp, int i);

Returns

The routine glp_get_row_type returns the type of i-th row, i.e. the type
of corresponding auxiliary variable, as follows:

GLP_FR free (unbounded) variable;
GLP_LO variable with lower bound;
GLP_UP variable with upper bound;
GLP_DB double-bounded variable;
GLP_FX fixed variable.

2.3.9 glp get row lb—retrieve row lower bound

Synopsis

double glp_get_row_lb(glp_prob *lp, int i);

Returns

The routine glp_get_row_lb returns the lower bound of i-th row, i.e. the
lower bound of corresponding auxiliary variable. However, if the row has no
lower bound, the routine returns -DBL_MAX.

2.3.10 glp get row ub—retrieve row upper bound

Synopsis

double glp_get_row_ub(glp_prob *lp, int i);

Returns

The routine glp_get_row_ub returns the upper bound of i-th row, i.e. the
upper bound of corresponding auxiliary variable. However, if the row has
no upper bound, the routine returns +DBL_MAX.
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2.3.11 glp get col type—retrieve column type

Synopsis

int glp_get_col_type(glp_prob *lp, int j);

Returns

The routine glp_get_col_type returns the type of j-th column, i.e. the
type of corresponding structural variable, as follows:

GLP_FR free (unbounded) variable;
GLP_LO variable with lower bound;
GLP_UP variable with upper bound;
GLP_DB double-bounded variable;
GLP_FX fixed variable.

2.3.12 glp get col lb—retrieve column lower bound

Synopsis

double glp_get_col_lb(glp_prob *lp, int j);

Returns

The routine glp_get_col_lb returns the lower bound of j-th column, i.e.
the lower bound of corresponding structural variable. However, if the column
has no lower bound, the routine returns -DBL_MAX.

2.3.13 glp get col ub—retrieve column upper bound

Synopsis

double glp_get_col_ub(glp_prob *lp, int j);

Returns

The routine glp_get_col_ub returns the upper bound of j-th column, i.e.
the upper bound of corresponding structural variable. However, if the col-
umn has no upper bound, the routine returns +DBL_MAX.
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2.3.14 glp get obj coef—retrieve objective coefficient or
constant term

Synopsis

double glp_get_obj_coef(glp_prob *lp, int j);

Returns

The routine glp_get_obj_coef returns the objective coefficient at j-th
structural variable (column).

If the parameter j is 0, the routine returns the constant term (“shift”)
of the objective function.

2.3.15 glp get num nz—retrieve number of constraint coef-
ficients

Synopsis

int glp_get_num_nz(glp_prob *lp);

Returns

The routine glp_get_num_nz returns the number of non-zero elements in
the constraint matrix of the specified problem object.

2.3.16 glp get mat row—retrieve row of the constraint ma-
trix

Synopsis

int glp_get_mat_row(glp_prob *lp, int i, int ind[],
double val[]);

Description

The routine glp_get_mat_row scans (non-zero) elements of i-th row of the
constraint matrix of the specified problem object and stores their column
indices and numeric values to locations ind[1], . . . , ind[len] and val[1],
. . . , val[len], respectively, where 0 ≤ len ≤ n is the number of elements
in i-th row, n is the number of columns.

The parameter ind and/or val can be specified as NULL, in which case
corresponding information is not stored.
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Returns

The routine glp_get_mat_row returns the length len, i.e. the number of
(non-zero) elements in i-th row.

2.3.17 glp get mat col—retrieve column of the constraint
matrix

Synopsis

int glp_get_mat_col(glp_prob *lp, int j, int ind[],
double val[]);

Description

The routine glp_get_mat_col scans (non-zero) elements of j-th column of
the constraint matrix of the specified problem object and stores their row
indices and numeric values to locations ind[1], . . . , ind[len] and val[1],
. . . , val[len], respectively, where 0 ≤ len ≤ m is the number of elements
in j-th column, m is the number of rows.

The parameter ind and/or val can be specified as NULL, in which case
corresponding information is not stored.

Returns

The routine glp_get_mat_col returns the length len, i.e. the number of
(non-zero) elements in j-th column.
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2.4 Row and column searching routines

2.4.1 glp create index—create the name index

Synopsis

void glp_create_index(glp_prob *lp);

Description

The routine glp_create_index creates the name index for the specified
problem object. The name index is an auxiliary data structure, which is
intended to quickly (i.e. for logarithmic time) find rows and columns by
their names.

This routine can be called at any time. If the name index already exists,
the routine does nothing.

2.4.2 glp find row—find row by its name

Synopsis

int glp_find_row(glp_prob *lp, const char *name);

Returns

The routine glp_find_row returns the ordinal number of a row, which is
assigned (by the routine glp_set_row_name) the specified symbolic name.
If no such row exists, the routine returns 0.

2.4.3 glp find col—find column by its name

Synopsis

int glp_find_col(glp_prob *lp, const char *name);

Returns

The routine glp_find_col returns the ordinal number of a column, which
is assigned (by the routine glp_set_col_name) the specified symbolic name.
If no such column exists, the routine returns 0.

38



2.4.4 glp delete index—delete the name index

Synopsis

void glp_delete_index(glp_prob *lp);

Description

The routine glp_delete_index deletes the name index previously created
by the routine glp_create_index and frees the memory allocated to this
auxiliary data structure.

This routine can be called at any time. If the name index does not exist,
the routine does nothing.
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2.5 Problem scaling routines

2.5.1 Background

In GLPK the scaling means a linear transformation applied to the constraint
matrix to improve its numerical properties.1

The main equality is the following:

Ã = RAS, (2.1)

where A = (aij) is the original constraint matrix, R = (rii) > 0 is a diagonal
matrix used to scale rows (constraints), S = (sjj) > 0 is a diagonal matrix
used to scale columns (variables), Ã is the scaled constraint matrix.

From (2.1) it follows that in the scaled problem instance each original
constraint coefficient aij is replaced by corresponding scaled constraint co-
efficient:

ãij = riiaijsjj . (2.2)

Note that the scaling is performed internally and therefore transparently
to the user. This means that on API level the user always deal with unscaled
data.

Scale factors rii and sjj can be set or changed at any time either directly
by the application program in a problem specific way (with the routines
glp_set_rii and glp_set_sjj), or by some API routines intended for au-
tomatic scaling.

2.5.2 glp set rii—set (change) row scale factor

Synopsis

void glp_set_rii(glp_prob *lp, int i, double rii);

Description

The routine glp_set_rii sets (changes) the scale factor rii for i-th row of
the specified problem object.

1In many cases a proper scaling allows making the constraint matrix to be better
conditioned, i.e. decreasing its condition number, that makes computations numerically
more stable.

40



2.5.3 glp set sjj—set (change) column scale factor

Synopsis

void glp_set_sjj(glp_prob *lp, int j, double sjj);

Description

The routine glp_set_sjj sets (changes) the scale factor sjj for j-th column
of the specified problem object.

2.5.4 glp get rii—retrieve row scale factor

Synopsis

double glp_get_rii(glp_prob *lp, int i);

Returns

The routine glp_get_rii returns current scale factor rii for i-th row of the
specified problem object.

2.5.5 glp get sjj—retrieve column scale factor

Synopsis

double glp_get_sjj(glp_prob *lp, int j);

Returns

The routine glp_get_sjj returns current scale factor sjj for j-th column of
the specified problem object.

2.5.6 glp scale prob—scale problem data

Synopsis

void glp_scale_prob(glp_prob *lp, int flags);

Description

The routine glp_scale_prob performs automatic scaling of problem data
for the specified problem object.
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The parameter flags specifies scaling options used by the routine. The
options can be combined with the bitwise OR operator and may be the
following:

GLP_SF_GM perform geometric mean scaling;
GLP_SF_EQ perform equilibration scaling;
GLP_SF_2N round scale factors to nearest power of two;
GLP_SF_SKIP skip scaling, if the problem is well scaled.
The parameter flags may be specified as GLP_SF_AUTO, in which case

the routine chooses the scaling options automatically.

2.5.7 glp unscale prob—unscale problem data

Synopsis

void glp_unscale_prob(glp_prob *lp);

The routine glp_unscale_prob performs unscaling of problem data for
the specified problem object.

“Unscaling” means replacing the current scaling matrices R and S by
unity matrices that cancels the scaling effect.
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2.6 LP basis constructing routines

2.6.1 Background

To start the search the simplex method needs a valid initial basis. In GLPK
the basis is completely defined by a set of statuses assigned to all (auxiliary
and structural) variables, where the status may be one of the following:

GLP_BS basic variable;
GLP_NL non-basic variable having active lower bound;
GLP_NU non-basic variable having active upper bound;
GLP_NF non-basic free variable;
GLP_NS non-basic fixed variable.
The basis is valid, if the basis matrix, which is a matrix built of columns

of the augmented constraint matrix (I |−A) corresponding to basic variables,
is non-singular. This, in particular, means that the number of basic variables
must be the same as the number of rows in the problem object. (For more
details see Section 4.1, page 92.)

Any initial basis may be constructed (or restored) with the API rou-
tines glp_set_row_stat and glp_set_col_stat by assigning appropriate
statuses to auxiliary and structural variables. Another way to construct an
initial basis is to use API routines like glp_adv_basis, which implement
so called crashing.2 Note that on normal exit the simplex solver remains
the basis valid, so in case of reoptimization there is no need to construct an
initial basis from scratch.

2.6.2 glp set row stat—set (change) row status

Synopsis

void glp_set_row_stat(glp_prob *lp, int i, int stat);

Description

The routine glp_set_row_stat sets (changes) the current status of i-th row
(auxiliary variable) as specified by the parameter stat:

GLP_BS make the row basic (make the constraint inactive);
GLP_NL make the row non-basic (make the constraint active);

2This term is from early linear programming systems and means a heuristic to construct
a valid initial basis.
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GLP_NU make the row non-basic and set it to the upper bound; if the
row is not double-bounded, this status is equivalent to GLP_NL
(only in the case of this routine);

GLP_NF the same as GLP_NL (only in the case of this routine);
GLP_NS the same as GLP_NL (only in the case of this routine).

2.6.3 glp set col stat—set (change) column status

Synopsis

void glp_set_col_stat(glp_prob *lp, int j, int stat);

Description

The routine glp_set_col_stat sets (changes) the current status of j-th
column (structural variable) as specified by the parameter stat:

GLP_BS make the column basic;
GLP_NL make the column non-basic;
GLP_NU make the column non-basic and set it to the upper bound; if

the column is not double-bounded, this status is equivalent to
GLP_NL (only in the case of this routine);

GLP_NF the same as GLP_NL (only in the case of this routine);
GLP_NS the same as GLP_NL (only in the case of this routine).

2.6.4 glp std basis—construct standard initial LP basis

Synopsis

void glp_std_basis(glp_prob *lp);

Description

The routine glp_std_basis constructs the “standard” (trivial) initial LP
basis for the specified problem object.

In the “standard” LP basis all auxiliary variables (rows) are basic, and
all structural variables (columns) are non-basic (so the corresponding basis
matrix is unity).
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2.6.5 glp adv basis—construct advanced initial LP basis

Synopsis

void glp_adv_basis(glp_prob *lp, int flags);

Description

The routine glp_adv_basis constructs an advanced initial LP basis for the
specified problem object.

The parameter flags is reserved for use in the future and must be spec-
ified as zero.

In order to construct the advanced initial LP basis the routine does the
following:

1) includes in the basis all non-fixed auxiliary variables;
2) includes in the basis as many non-fixed structural variables as possible

keeping the triangular form of the basis matrix;
3) includes in the basis appropriate (fixed) auxiliary variables to complete

the basis.
As a result the initial LP basis has as few fixed variables as possible and

the corresponding basis matrix is triangular.

2.6.6 glp cpx basis—construct Bixby’s initial LP basis

Synopsis

void glp_cpx_basis(glp_prob *lp);

Description

The routine glp_cpx_basis constructs an initial basis for the specified prob-
lem object with the algorithm proposed by R. Bixby.3

3Robert E. Bixby, “Implementing the Simplex Method: The Initial Basis.” ORSA
Journal on Computing, Vol. 4, No. 3, 1992, pp. 267-84.
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2.7 Simplex method routines

The simplex method is a well known efficient numerical procedure to solve
LP problems.

On each iteration the simplex method transforms the original system of
equaility constraints (1.2) resolving them through different sets of variables
to an equivalent system called the simplex table (or sometimes the simplex
tableau), which has the following form:

z = d1(xN )1 + d2(xN )2 + . . . + dn(xN )n

(xB)1 = ξ11(xN )1 + ξ12(xN )2 + . . . + ξ1n(xN )n

(xB)2 = ξ21(xN )1 + ξ22(xN )2 + . . . + ξ2n(xN )n

. . . . . . . . . . . . . .
(xB)m = ξm1(xN )1 + ξm2(xN )2 + . . . + ξmn(xN )n

(2.1)

where: (xB)1, (xB)2, . . . , (xB)m are basic variables; (xN )1, (xN )2, . . . , (xN )n

are non-basic variables; d1, d2, . . . , dn are reduced costs; ξ11, ξ12, . . . , ξmn are
coefficients of the simplex table. (May note that the original LP problem
(1.1)—(1.3) also has the form of a simplex table, where all equalities are
resolved through auxiliary variables.)

From the linear programming theory it is known that if an optimal so-
lution of the LP problem (1.1)—(1.3) exists, it can always be written in the
form (2.1), where non-basic variables are set on their bounds while values
of the objective function and basic variables are determined by the corre-
sponding equalities of the simplex table.

A set of values of all basic and non-basic variables determined by the
simplex table is called basic solution. If all basic variables are within their
bounds, the basic solution is called (primal) feasible, otherwise it is called
(primal) infeasible. A feasible basic solution, which provides a smallest (in
case of minimization) or a largest (in case of maximization) value of the
objective function is called optimal. Therefore, for solving LP problem the
simplex method tries to find its optimal basic solution.

Primal feasibility of some basic solution may be stated by simple checking
if all basic variables are within their bounds. Basic solution is optimal if
additionally the following optimality conditions are satisfied for all non-basic
variables:

Status of (xN )j Minimization Maximization
(xN )j is free dj = 0 dj = 0
(xN )j is on its lower bound dj ≥ 0 dj ≤ 0
(xN )j is on its upper bound dj ≤ 0 dj ≥ 0
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In other words, basic solution is optimal if there is no non-basic variable,
which changing in the feasible direction (i.e. increasing if it is free or on its
lower bound, or decreasing if it is free or on its upper bound) can improve
(i.e. decrease in case of minimization or increase in case of maximization)
the objective function.

If all non-basic variables satisfy to the optimality conditions shown above
(independently on whether basic variables are within their bounds or not),
the basic solution is called dual feasible, otherwise it is called dual infeasible.

It may happen that some LP problem has no primal feasible solution
due to incorrect formulation—this means that its constraints conflict with
each other. It also may happen that some LP problem has unbounded
solution again due to incorrect formulation—this means that some non-basic
variable can improve the objective function, i.e. the optimality conditions
are violated, and at the same time this variable can infinitely change in the
feasible direction meeting no resistance from basic variables. (May note that
in the latter case the LP problem has no dual feasible solution.)

2.7.1 glp simplex—solve LP problem with the primal or dual
simplex method

Synopsis

int glp_simplex(glp_prob *lp, const glp_smcp *parm);

Description

The routine glp_simplex is a driver to the LP solver based on the simplex
method. This routine retrieves problem data from the specified problem
object, calls the solver to solve the problem instance, and stores results of
computations back into the problem object.

The simplex solver has a set of control parameters. Values of the control
parameters can be passed in the structure glp_smcp, which the parameter
parm points to. For detailed description of this structure see paragraph
“Control parameters” below. Before specifying some control parameters
the application program should initialize the structure glp_smcp by default
values of all control parameters using the routine glp_init_smcp (see the
next subsection). This is needed for backward compatibility, because in the
future there may appear new members in the structure glp_smcp.

The parameter parm can be specified as NULL, in which case the solver
uses default settings.
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Returns

0 The LP problem instance has been successfully solved.
(This code does not necessarily mean that the solver has
found optimal solution. It only means that the solution
process was successful.)

GLP_EBADB Unable to start the search, because the initial basis speci-
fied in the problem object is invalid—the number of basic
(auxiliary and structural) variables is not the same as the
number of rows in the problem object.

GLP_ESING Unable to start the search, because the basis matrix corre-
sponding to the initial basis is singular within the working
precision.

GLP_ECOND Unable to start the search, because the basis matrix cor-
responding to the initial basis is ill-conditioned, i.e. its
condition number is too large.

GLP_EBOUND Unable to start the search, because some double-bounded
(auxiliary or structural) variables have incorrect bounds.

GLP_EFAIL The search was prematurely terminated due to the solver
failure.

GLP_EOBJLL The search was prematurely terminated, because the ob-
jective function being maximized has reached its lower
limit and continues decreasing (the dual simplex only).

GLP_EOBJUL The search was prematurely terminated, because the ob-
jective function being minimized has reached its upper
limit and continues increasing (the dual simplex only).

GLP_EITLIM The search was prematurely terminated, because the sim-
plex iteration limit has been exceeded.

GLP_ETMLIM The search was prematurely terminated, because the time
limit has been exceeded.

GLP_ENOPFS The LP problem instance has no primal feasible solution
(only if the LP presolver is used).

GLP_ENODFS The LP problem instance has no dual feasible solution
(only if the LP presolver is used).

Built-in LP presolver

The simplex solver has built-in LP presolver. It is a subprogram that trans-
forms the original LP problem specified in the problem object to an equiva-
lent LP problem, which may be easier for solving with the simplex method
than the original one. This is attained mainly due to reducing the prob-
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lem size and improving its numeric properties (for example, by removing
some inactive constraints or by fixing some non-basic variables). Once the
transformed LP problem has been solved, the presolver transforms its basic
solution back to the corresponding basic solution of the original problem.

Presolving is an optional feature of the routine glp_simplex, and by de-
fault it is disabled. In order to enable the LP presolver the control parameter
presolve should be set to GLP_ON (see paragraph “Control parameters” be-
low). Presolving may be used when the problem instance is solved for the
first time. However, on performing re-optimization the presolver should be
disabled.

The presolving procedure is transparent to the API user in the sense
that all necessary processing is performed internally, and a basic solution
of the original problem recovered by the presolver is the same as if it were
computed directly, i.e. without presolving.

Note that the presolver is able to recover only optimal solutions. If a
computed solution is infeasible or non-optimal, the corresponding solution of
the original problem cannot be recovered and therefore remains undefined.
If you need to know a basic solution even if it is infeasible or non-optimal,
the presolver should be disabled.

Terminal output

Solving large problem instances may take a long time, so the solver reports
some information about the current basic solution, which is sent to the
terminal. This information has the following format:

nnn: obj = xxx infeas = yyy (ddd)

where: ‘nnn’ is the iteration number, ‘xxx’ is the current value of the objec-
tive function (it is is unscaled and has correct sign); ‘yyy’ is the current sum
of primal or dual infeasibilities (it is scaled and therefore may be used only
for visual estimating), ‘ddd’ is the current number of fixed basic variables.

The symbol preceding the iteration number indicates which phase of the
simplex method is in effect:

Blank means that the solver is searching for primal feasible solution using
the primal simplex or for dual feasible solution using the dual simplex;

Asterisk (*) means that the solver is searching for optimal solution using
the primal simplex;

Vertical dash (|) means that the solver is searching for optimal solution
using the dual simplex.
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Control parameters

This paragraph describes all control parameters currently used in the sim-
plex solver. Symbolic names of control parameters are names of correspond-
ing members in the structure glp_smcp.

int msg lev (default: GLP MSG ALL)
Message level for terminal output:
GLP_MSG_OFF—no output;
GLP_MSG_ERR—error and warning messages only;
GLP_MSG_ON —normal output;
GLP_MSG_ALL—full output (including informational messages).

int meth (default: GLP PRIMAL)
Simplex method option:
GLP_PRIMAL—use two-phase primal simplex;
GLP_DUAL —use two-phase dual simplex;
GLP_DUALP —use two-phase dual simplex, and if it fails, switch to the

primal simplex.

int pricing (default: GLP PT PSE)
Pricing technique:
GLP_PT_STD—standard (textbook);
GLP_PT_PSE—projected steepest edge.

int r test (default: GLP RT HAR)
Ratio test technique:
GLP_RT_STD—standard (textbook);
GLP_RT_HAR—Harris’ two-pass ratio test.

double tol bnd (default: 1e-7)
Tolerance used to check if the basic solution is primal feasible. (Do not
change this parameter without detailed understanding its purpose.)

double tol dj (default: 1e-7)
Tolerance used to check if the basic solution is dual feasible. (Do not
change this parameter without detailed understanding its purpose.)

double tol piv (default: 1e-10)
Tolerance used to choose eligble pivotal elements of the simplex table.
(Do not change this parameter without detailed understanding its pur-
pose.)
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double obj ll (default: -DBL MAX)
Lower limit of the objective function. If the objective function reaches
this limit and continues decreasing, the solver terminates the search.
(Used in the dual simplex only.)

double obj ul (default: +DBL MAX)
Upper limit of the objective function. If the objective function reaches
this limit and continues increasing, the solver terminates the search.
(Used in the dual simplex only.)

int it lim (default: INT MAX)
Simplex iteration limit.

int tm lim (default: INT MAX)
Searching time limit, in milliseconds.

int out frq (default: 200)
Output frequency, in iterations. This parameter specifies how frequently
the solver sends information about the solution process to the terminal.

int out dly (default: 0)
Output delay, in milliseconds. This parameter specifies how long the
solver should delay sending information about the solution process to
the terminal.

int presolve (default: GLP OFF)
LP presolver option:
GLP_ON —enable using the LP presolver;
GLP_OFF—disable using the LP presolver.

2.7.2 glp exact—solve LP problem in exact arithmetic

Synopsis

int glp_exact(glp_prob *lp, const glp_smcp *parm);

Description

The routine glp_exact is a tentative implementation of the primal two-
phase simplex method based on exact (rational) arithmetic. It is similar
to the routine glp_simplex, however, for all internal computations it uses
arithmetic of rational numbers, which is exact in mathematical sense, i.e.
free of round-off errors unlike floating-point arithmetic.

Note that the routine glp_exact uses only two control parameters passed
in the structure glp_smcp, namely, it_lim and tm_lim.
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Returns

0 The LP problem instance has been successfully solved.
(This code does not necessarily mean that the solver has
found optimal solution. It only means that the solution
process was successful.)

GLP_EBADB Unable to start the search, because the initial basis speci-
fied in the problem object is invalid—the number of basic
(auxiliary and structural) variables is not the same as the
number of rows in the problem object.

GLP_ESING Unable to start the search, because the basis matrix cor-
responding to the initial basis is exactly singular.

GLP_EBOUND Unable to start the search, because some double-bounded
(auxiliary or structural) variables have incorrect bounds.

GLP_EFAIL The problem instance has no rows/columns.
GLP_EITLIM The search was prematurely terminated, because the sim-

plex iteration limit has been exceeded.
GLP_ETMLIM The search was prematurely terminated, because the time

limit has been exceeded.

Comments

Computations in exact arithmetic are very time consuming, so solving LP
problem with the routine glp_exact from the very beginning is not a good
idea. It is much better at first to find an optimal basis with the routine
glp_simplex and only then to call glp_exact, in which case only a few
simplex iterations need to be performed in exact arithmetic.

2.7.3 glp init smcp—initialize simplex method control pa-
rameters

Synopsis

int glp_init_smcp(glp_smcp *parm);

Description

The routine glp_init_smcp initializes control parameters, which are used
by the simplex solver, with default values.

Default values of the control parameters are stored in a glp_smcp struc-
ture, which the parameter parm points to.
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2.7.4 glp get status—retrieve generic status of basic solution

Synopsis

int glp_get_status(glp_prob *lp);

Returns

The routine glp_get_status reports the generic status of the current basic
solution for the specified problem object as follows:

GLP_OPT solution is optimal;
GLP_FEAS solution is feasible;
GLP_INFEAS solution is infeasible;
GLP_NOFEAS problem has no feasible solution;
GLP_UNBND problem has unbounded solution;
GLP_UNDEF solution is undefined.
More detailed information about the status of basic solution can be re-

trieved with the routines glp_get_prim_stat and glp_get_dual_stat.

2.7.5 glp get prim stat—retrieve status of primal basic so-
lution

Synopsis

int glp_get_prim_stat(glp_prob *lp);

Returns

The routine glp_get_prim_stat reports the status of the primal basic so-
lution for the specified problem object as follows:

GLP_UNDEF primal solution is undefined;
GLP_FEAS primal solution is feasible;
GLP_INFEAS primal solution is infeasible;
GLP_NOFEAS no primal feasible solution exists.
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2.7.6 glp get dual stat—retrieve status of dual basic solu-
tion

Synopsis

int glp_get_dual_stat(glp_prob *lp);

Returns

The routine glp_get_dual_stat reports the status of the dual basic solution
for the specified problem object as follows:

GLP_UNDEF dual solution is undefined;
GLP_FEAS dual solution is feasible;
GLP_INFEAS dual solution is infeasible;
GLP_NOFEAS no dual feasible solution exists.

2.7.7 glp get obj val—retrieve objective value

Synopsis

double glp_get_obj_val(glp_prob *lp);

Returns

The routine glp_get_obj_val returns current value of the objective func-
tion.

2.7.8 glp get row stat—retrieve row status

Synopsis

int glp_get_row_stat(glp_prob *lp, int i);

Returns

The routine glp_get_row_stat returns current status assigned to the aux-
iliary variable associated with i-th row as follows:

GLP_BS basic variable;
GLP_NL non-basic variable on its lower bound;
GLP_NU non-basic variable on its upper bound;
GLP_NF non-basic free (unbounded) variable;
GLP_NS non-basic fixed variable.
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2.7.9 glp get row prim—retrieve row primal value

Synopsis

double glp_get_row_prim(glp_prob *lp, int i);

Returns

The routine glp_get_row_prim returns primal value of the auxiliary vari-
able associated with i-th row.

2.7.10 glp get row dual—retrieve row dual value

Synopsis

double glp_get_row_dual(glp_prob *lp, int i);

Returns

The routine glp_get_row_dual returns dual value (i.e. reduced cost) of the
auxiliary variable associated with i-th row.

2.7.11 glp get col stat—retrieve column status

Synopsis

int glp_get_col_stat(glp_prob *lp, int j);

Returns

The routine glp_get_col_stat returns current status assigned to the struc-
tural variable associated with j-th column as follows:

GLP_BS basic variable;
GLP_NL non-basic variable on its lower bound;
GLP_NU non-basic variable on its upper bound;
GLP_NF non-basic free (unbounded) variable;
GLP_NS non-basic fixed variable.
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2.7.12 glp get col prim—retrieve column primal value

Synopsis

double glp_get_col_prim(glp_prob *lp, int j);

Returns

The routine glp_get_col_prim returns primal value of the structural vari-
able associated with j-th column.

2.7.13 glp get col dual—retrieve column dual value

Synopsis

double glp_get_col_dual(glp_prob *lp, int j);

Returns

The routine glp_get_col_dual returns dual value (i.e. reduced cost) of the
structural variable associated with j-th column.

2.7.14 glp get unbnd ray—determine variable causing
unboundedness

Synopsis

int glp_get_unbnd_ray(glp_prob *lp);

Returns

The routine glp_get_unbnd_ray returns the number k of a variable, which
causes primal or dual unboundedness. If 1 ≤ k ≤ m, it is k-th auxiliary
variable, and if m + 1 ≤ k ≤ m + n, it is (k − m)-th structural variable,
where m is the number of rows, n is the number of columns in the problem
object. If such variable is not defined, the routine returns 0.

Comments

If it is not exactly known which version of the simplex solver detected un-
boundedness, i.e. whether the unboundedness is primal or dual, it is suffi-
cient to check the status of the variable with the routine glp_get_row_stat
or glp_get_col_stat. If the variable is non-basic, the unboundedness is
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primal, otherwise, if the variable is basic, the unboundedness is dual (the
latter case means that the problem has no primal feasible dolution).

2.7.15 lpx check kkt—check Karush-Kuhn-Tucker optimal-
ity conditions

Synopsis

void lpx_check_kkt(glp_prob *lp, int scaled, LPXKKT *kkt);

Description

The routine lpx_check_kkt checks Karush-Kuhn-Tucker optimality condi-
tions for basic solution. It is assumed that both primal and dual components
of basic solution are valid.

If the parameter scaled is zero, the optimality conditions are checked
for the original, unscaled LP problem. Otherwise, if the parameter scaled
is non-zero, the routine checks the conditions for an internally scaled LP
problem.

The parameter kkt is a pointer to the structure LPXKKT, to which the
routine stores results of the check. Members of this structure are shown in
the table below.

The routine performs all computations using only components of the
given LP problem and the current basic solution.

Background

The first condition checked by the routine is:

xR −AxS = 0, (KKT.PE)

where xR is the subvector of auxiliary variables (rows), xS is the subvector
of structural variables (columns), A is the constraint matrix. This condition
expresses the requirement that all primal variables must satisfy to the system
of equality constraints of the original LP problem. In case of exact arithmetic
this condition would be satisfied for any basic solution; however, in case of
inexact (floating-point) arithmetic, this condition shows how accurate the
primal basic solution is, that depends on accuracy of a representation of the
basis matrix used by the simplex method routines.

The second condition checked by the routine is:

lk ≤ xk ≤ uk for all k = 1, . . . , m + n, (KKT.PB)
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Condition Member Comment
(KKT.PE) pe_ae_max Largest absolute error

pe_ae_row Number of row with largest absolute error
pe_re_max Largest relative error
pe_re_row Number of row with largest relative error
pe_quality Quality of primal solution

(KKT.PB) pb_ae_max Largest absolute error
pb_ae_ind Number of variable with largest absolute error
pb_re_max Largest relative error
pb_re_ind Number of variable with largest relative error
pb_quality Quality of primal feasibility

(KKT.DE) de_ae_max Largest absolute error
de_ae_col Number of column with largest absolute error
de_re_max Largest relative error
de_re_col Number of column with largest relative error
de_quality Quality of dual solution

(KKT.DB) db_ae_max Largest absolute error
db_ae_ind Number of variable with largest absolute error
db_re_max Largest relative error
db_re_ind Number of variable with largest relative error
db_quality Quality of dual feasibility

where xk is auxiliary (1 ≤ k ≤ m) or structural (m+1 ≤ k ≤ m+n) variable,
lk and uk are, respectively, lower and upper bounds of the variable xk (in-
cluding cases of infinite bounds). This condition expresses the requirement
that all primal variables must satisfy to bound constraints of the original LP
problem. Since in case of basic solution all non-basic variables are placed
on their bounds, actually the condition (KKT.PB) needs to be checked for
basic variables only. If the primal basic solution has sufficient accuracy, this
condition shows primal feasibility of the solution.

The third condition checked by the routine is:

grad Z = c = (Ã)T π + d,

where Z is the objective function, c is the vector of objective coefficients,
(Ã)T is a matrix transposed to the expanded constraint matrix Ã = (I|−A),
π is a vector of Lagrange multipliers that correspond to equality constraints
of the original LP problem, d is a vector of Lagrange multipliers that cor-
respond to bound constraints for all (auxiliary and structural) variables of
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the original LP problem. Geometrically the third condition expresses the
requirement that the gradient of the objective function must belong to the
orthogonal complement of a linear subspace defined by the equality and ac-
tive bound constraints, i.e. that the gradient must be a linear combination
of normals to the constraint planes, where Lagrange multipliers π and d are
coefficients of that linear combination.

To eliminate the vector π the third condition can be rewritten as:
(

I
−AT

)
π =

(
dR

dS

)
+

(
cR

cS

)
,

or, equivalently:
π + dR = cR,

−AT π + dS = cS .

Then substituting the vector π from the first equation into the second one
we have:

AT (dR − cR) + (dS − cS) = 0, (KKT.DE)

where dR is the subvector of reduced costs of auxiliary variables (rows),
dS is the subvector of reduced costs of structural variables (columns), cR

and cS are subvectors of objective coefficients at, respectively, auxiliary and
structural variables, AT is a matrix transposed to the constraint matrix of
the original LP problem. In case of exact arithmetic this condition would be
satisfied for any basic solution; however, in case of inexact (floating-point)
arithmetic, this condition shows how accurate the dual basic solution is,
that depends on accuracy of a representation of the basis matrix used by
the simplex method routines.

The last, fourth condition checked by the routine is (KKT.DB):

dk = 0, if xk is basic or free non-basic variable
0 ≤ dk < +∞ if xk is non-basic on its lower (minimization)

or upper (maximization) bound
−∞ < dk ≤ 0 if xk is non-basic on its upper (minimization)

or lower (maximization) bound
−∞ < dk < +∞ if xk is non-basic fixed variable

for all k = 1, . . . , m + n, where dk is a reduced cost (Lagrange multiplier)
of auxiliary (1 ≤ k ≤ m) or structural (m + 1 ≤ k ≤ m + n) variable xk.
Geometrically this condition expresses the requirement that constraints of
the original problem must ”hold” the point preventing its movement along
the anti-gradient (in case of minimization) or the gradient (in case of maxi-
mization) of the objective function. Since in case of basic solution reduced
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costs of all basic variables are placed on their (zero) bounds, actually the
condition (KKT.DB) needs to be checked for non-basic variables only. If
the dual basic solution has sufficient accuracy, this condition shows dual
feasibility of the solution.

Should note that the complete set of Karush-Kuhn-Tucker optimality
conditions also includes the fifth, so called complementary slackness condi-
tion, which expresses the requirement that at least either a primal variable
xk or its dual counterpart dk must be on its bound for all k = 1, . . . , m + n.
However, being always satisfied by definition for any basic solution that
condition is not checked by the routine.

To check the first condition (KKT.PE) the routine computes a vector of
residuals:

g = xR −AxS ,

determines component of this vector that correspond to largest absolute and
relative errors:

pe_ae_max = max
1≤i≤m

|gi|,

pe_re_max = max
1≤i≤m

|gi|
1 + |(xR)i| ,

and stores these quantities and corresponding row indices to the structure
LPXKKT.

To check the second condition (KKT.PB) the routine computes a vector
of residuals:

hk =





0, if lk ≤ xk ≤ uk

xk − lk, if xk < lk
xk − uk, if xk > uk

for all k = 1, . . . ,m + n, determines components of this vector that corre-
spond to largest absolute and relative errors:

pb_ae_max = max
1≤k≤m+n

|hk|,

pb_re_max = max
1≤k≤m+n

|hk|
1 + |xk| ,

and stores these quantities and corresponding variable indices to the struc-
ture LPXKKT.

To check the third condition (KKT.DE) the routine computes a vector
of residuals:

u = AT (dR − cR) + (dS − cS),
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determines components of this vector that correspond to largest absolute
and relative errors:

de_ae_max = max
1≤j≤n

|uj |,

de_re_max = max
1≤j≤n

|uj |
1 + |(dS)j − (cS)j | ,

and stores these quantities and corresponding column indices to the struc-
ture LPXKKT.

To check the fourth condition (KKT.DB) the routine computes a vector
of residuals:

vk =

{
0, if dk has correct sign
dk, if dk has wrong sign

for all k = 1, . . . ,m + n, determines components of this vector that corre-
spond to largest absolute and relative errors:

db_ae_max = max
1≤k≤m+n

|vk|,

db_re_max = max
1≤k≤m+n

|vk|
1 + |dk − ck| ,

and stores these quantities and corresponding variable indices to the struc-
ture LPXKKT.

Using the relative errors for all the four conditions listed above the rou-
tine lpx_check_kkt also estimates a ”quality” of the basic solution from the
standpoint of these conditions and stores corresponding quality indicators
to the structure LPXKKT:

pe_quality—quality of primal solution;
pb_quality—quality of primal feasibility;
de_quality—quality of dual solution;
db_quality—quality of dual feasibility.
Each of these indicators is assigned to one of the following four values:
’H’ means high quality,
’M’ means medium quality,
’L’ means low quality, or
’?’ means wrong or infeasible solution.
If all the indicators show high or medium quality (for an internally

scaled LP problem, i.e. when the parameter scaled in a call to the routine
lpx_check_kkt is non-zero), the user can be sure that the obtained basic
solution is quite accurate.
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If some of the indicators show low quality, the solution can still be con-
sidered as relevant, though an additional analysis is needed depending on
which indicator shows low quality.

If the indicator pe_quality is assigned to ’?’, the primal solution is
wrong. If the indicator de_quality is assigned to ’?’, the dual solution is
wrong.

If the indicator db_quality is assigned to ’?’ while other indicators
show a good quality, this means that the current basic solution being primal
feasible is not dual feasible. Similarly, if the indicator pb_quality is assigned
to ’?’ while other indicators are not, this means that the current basic
solution being dual feasible is not primal feasible.
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2.8 Interior-point method routines

2.8.1 glp interior—solve LP problem with the interior-point
method

Synopsis

int glp_interior(glp_prob *lp, const void *parm);

Description

The routine glp_interior is an interface to the LP problem solver based
on the primal-dual interior-point method. This routine retrieves problem
data from the specified problem object, calls the solver to solve the problem
instance, and stores results of computations back into the problem object.

The parameter parm is reserved for use in the future and must be speci-
fied as NULL.

Returns

0 The LP problem instance has been successfully solved.
(This code does not necessarily mean that the solver has
found optimal solution. It only means that the solution
process was successful.)

GLP_EFAIL The problem has no rows/columns.
GLP_ENOFEAS The problem has no feasible (primal/dual) solution.
GLP_ENOCVG Very slow convergence or divergence.
GLP_EITLIM Iteration limit exceeded.
GLP_EINSTAB Numerical instability on solving Newtonian system.

Comments

Interior-point methods (also known as barrier methods) are more modern
and powerful numerical methods for large-scale linear programming. Such
methods are especially efficient for very sparse LP problems and allow solv-
ing such problems much faster than the simplex method.

Currently the routine glp_interior implements an easy version of the
primal-dual interior-point method based on Mehrotra’s technique.4

Should note that currently the GLPK interior-point solver does not in-
clude many important features, in particular:

4S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM
J. on Optim., 2(4), pp. 575-601, 1992.
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• it is not able to process dense columns. Thus, if the constraint matrix
of the LP problem has dense columns, the solving process may be inefficient;

• it has no features against numerical instability. For some LP problems
premature termination may happen if the matrix ADAT becomes singular
or ill-conditioned;

• it is not able to identify the optimal basis, which corresponds to the
interior-point solution found.

Terminal output

Solving large LP problems may take a long time, so the solver reports some
information about every interior point iteration,5, which is sent to the ter-
minal. This information has the following format:

nnn: F = fff; rpi = ppp; rdi = ddd; gap = ggg

where nnn is iteration number, fff is the current value of the objective
function (in the case of maximization it has wrong sign), ppp is the current
relative primal infeasibility, ddd is the current relative dual infeasibility, and
ggg is the current primal-dual gap.

2.8.2 glp ipt status—retrieve status of interior-point solu-
tion

Synopsis

int glp_ipt_status(glp_prob *lp);

Returns

The routine glp_ipt_status reports the status of a solution found by the
interior-point solver as follows:

GLP_UNDEF interior-point solution is undefined.
GLP_OPT interior-point solution is optimal.

5Unlike the simplex method the interior point method usually needs 30—50 iterations
(independently on the problem size) in order to find an optimal solution.
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2.8.3 glp ipt obj val—retrieve objective value

Synopsis

double glp_ipt_obj_val(glp_prob *lp);

Returns

The routine glp_ipt_obj_val returns value of the objective function for
interior-point solution.

2.8.4 glp ipt row prim—retrieve row primal value

Synopsis

double glp_ipt_row_prim(glp_prob *lp, int i);

Returns

The routine glp_ipt_row_prim returns primal value of the auxiliary vari-
able associated with i-th row.

2.8.5 glp ipt row dual—retrieve row dual value

Synopsis

double glp_ipt_row_dual(glp_prob *lp, int i);

Returns

The routine glp_ipt_row_dual returns dual value (i.e. reduced cost) of the
auxiliary variable associated with i-th row.

2.8.6 glp ipt col prim—retrieve column primal value

Synopsis

double glp_ipt_col_prim(glp_prob *lp, int j);

Returns

The routine glp_ipt_col_prim returns primal value of the structural vari-
able associated with j-th column.
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2.8.7 glp ipt col dual—retrieve column dual value

Synopsis

double glp_ipt_col_dual(glp_prob *lp, int j);

Returns

The routine glp_ipt_col_dual returns dual value (i.e. reduced cost) of the
structural variable associated with j-th column.
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2.9 Mixed integer programming routines

2.9.1 glp set col kind—set (change) column kind

Synopsis

void glp_set_col_kind(glp_prob *mip, int j, int kind);

Description

The routine glp_set_col_kind sets (changes) the kind of j-th column
(structural variable) as specified by the parameter kind:

GLP_CV continuous variable;
GLP_IV integer variable;
GLP_BV binary variable.
Setting a column to GLP_BV has the same effect as if it were set to GLP_IV,

its lower bound were set 0, and its upper bound were set to 1.

2.9.2 glp get col kind—retrieve column kind

Synopsis

int glp_get_col_kind(glp_prob *mip, int j);

Returns

The routine glp_get_col_kind returns the kind of j-th column (structural
variable) as follows:

GLP_CV continuous variable;
GLP_IV integer variable;
GLP_BV binary variable.

2.9.3 glp get num int—retrieve number of integer columns

Synopsis

int glp_get_num_int(glp_prob *mip);

Returns

The routine glp_get_num_int returns the number of columns (structural
variables), which are marked as integer. Note that this number does include
binary columns.
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2.9.4 glp get num bin—retrieve number of binary columns

Synopsis

int glp_get_num_bin(glp_prob *mip);

Returns

The routine glp_get_num_bin returns the number of columns (structural
variables), which are marked as integer and whose lower bound is zero and
upper bound is one.

2.9.5 glp intopt—solve MIP problem with the branch-and-
cut method

Synopsis

int glp_intopt(glp_prob *mip, const glp_iocp *parm);

Description

The routine glp_intopt is a driver to the MIP solver based on the branch-
and-cut method, which is a hybrid of branch-and-bound and cutting plane
methods.

If the presolver is disabled (see paragraph “Control parameters” below),
on entry to the routine glp_intopt the problem object, which the parameter
mip points to, should contain optimal solution to LP relaxation (it can be
obtained, for example, with the routine glp_simplex). Otherwise, if the
presolver is enabled, it is not necessary.

The MIP solver has a set of control parameters. Values of the control
parameters can be passed in the structure glp_iocp, which the parameter
parm points to. For detailed description of this structure see paragraph
“Control parameters” below. Before specifying some control parameters
the application program should initialize the structure glp_iocp by default
values of all control parameters using the routine glp_init_iocp (see the
next subsection). This is needed for backward compatibility, because in the
future there may appear new members in the structure glp_iocp.

The parameter parm can be specified as NULL, in which case the solver
uses default settings.

Note that the GLPK branch-and-cut solver is not perfect, so it is unable
to solve hard or very large scale MIP instances for a reasonable time.

68



Returns

0 The MIP problem instance has been successfully solved.
(This code does not necessarily mean that the solver has
found optimal solution. It only means that the solution
process was successful.)

GLP_EBOUND Unable to start the search, because some double-bounded
variables have incorrect bounds or some integer variables
have non-integer (fractional) bounds.

GLP_EROOT Unable to start the search, because optimal basis for initial
LP relaxation is not provided. (This code may appear only
if the presolver is disabled.)

GLP_ENOPFS Unable to start the search, because LP relaxation of the
MIP problem instance has no primal feasible solution.
(This code may appear only if the presolver is enabled.)

GLP_ENODFS Unable to start the search, because LP relaxation of the
MIP problem instance has no dual feasible solution. In
other word, this code means that if the LP relaxation has
at least one primal feasible solution, its optimal solution is
unbounded, so if the MIP problem has at least one integer
feasible solution, its (integer) optimal solution is also un-
bounded. (This code may appear only if the presolver is
enabled.)

GLP_EFAIL The search was prematurely terminated due to the solver
failure.

GLP_EMIPGAP The search was prematurely terminated, because the rela-
tive mip gap tolerance has been reached.

GLP_ETMLIM The search was prematurely terminated, because the time
limit has been exceeded.

GLP_ESTOP The search was prematurely terminated by application.
(This code may appear only if the advanced solver inter-
face is used.)

Built-in MIP presolver

The branch-and-cut solver has built-in MIP presolver. It is a subprogram
that transforms the original MIP problem specified in the problem object
to an equivalent MIP problem, which may be easier for solving with the
branch-and-cut method than the original one. For example, the presolver
can remove redundant constraints and variables, whose optimal values are
known, perform bound and coefficient reduction, etc. Once the transformed
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MIP problem has been solved, the presolver transforms its solution back to
corresponding solution of the original problem.

Presolving is an optional feature of the routine glp_intopt, and by de-
fault it is disabled. In order to enable the MIP presolver, the control param-
eter presolve should be set to GLP_ON (see paragraph “Control parameters”
below).

Advanced solver interface

The routine glp_intopt allows the user to control the branch-and-cut search
by passing to the solver a user-defined callback routine. For more details
see Chapter “Branch-and-Cut API Routines”.

Terminal output

Solving a MIP problem may take a long time, so the solver reports some
information about best known solutions, which is sent to the terminal. This
information has the following format:

+nnn: mip = xxx <rho> yyy gap (ppp; qqq)

where: ‘nnn’ is the simplex iteration number; ‘xxx’ is a value of the objective
function for the best known integer feasible solution (if no integer feasible
solution has been found yet, ‘xxx’ is the text ‘not found yet’); ‘rho’ is the
string ‘>=’ (in case of minimization) or ‘<=’ (in case of maximization); ‘yyy’
is a global bound for exact integer optimum (i.e. the exact integer optimum
is always in the range from ‘xxx’ to ‘yyy’); ‘gap’ is the relative mip gap,
in percents, computed as gap = |xxx − yyy|/(|xxx| + DBL EPSILON) · 100%
(if gap is greater than 999.9%, it is not printed); ‘ppp’ is the number of
subproblems in the active list, ‘qqq’ is the number of subproblems which
have been already fathomed and therefore removed from the branch-and-
bound search tree.

Control parameters

This paragraph describes all control parameters currently used in the MIP
solver. Symbolic names of control parameters are names of corresponding
members in the structure glp_iocp.
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int msg lev (default: GLP MSG ALL)
Message level for terminal output:
GLP_MSG_OFF—no output;
GLP_MSG_ERR—error and warning messages only;
GLP_MSG_ON —normal output;
GLP_MSG_ALL—full output (including informational messages).

int br tech (default: GLP BR DTH)
Branching technique option:
GLP_BR_FFV—first fractional variable;
GLP_BR_LFV—last fractional variable;
GLP_BR_MFV—most fractional variable;
GLP_BR_DTH—heuristic by Driebeck and Tomlin.

int bt tech (default: GLP BT BLB)
Backtracking technique option:
GLP_BT_DFS—depth first search;
GLP_BT_BFS—breadth first search;
GLP_BT_BLB—best local bound;
GLP_BT_BPH—best projection heuristic.

int pp tech (default: GLP PP ALL)
Preprocessing technique option:
GLP_PP_NONE—disable preprocessing;
GLP_PP_ROOT—perform preprocessing only on the root level;
GLP_PP_ALL —perform preprocessing on all levels.

int gmi cuts (default: GLP OFF)
Gomory’s mixed integer cut option:
GLP_ON —enable generating Gomory’s cuts;
GLP_OFF—disable generating Gomory’s cuts.

int mir cuts (default: GLP OFF)
Mixed integer rounding (MIR) cut option:
GLP_ON —enable generating MIR cuts;
GLP_OFF—disable generating MIR cuts.

int cov cuts (default: GLP OFF)
Mixed cover cut option:
GLP_ON —enable generating mixed cover cuts;
GLP_OFF—disable generating mixed cover cuts.
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int clq cuts (default: GLP OFF)
Clique cut option:
GLP_ON —enable generating clique cuts;
GLP_OFF—disable generating clique cuts.

double tol int (default: 1e-5)
Absolute tolerance used to check if optimal solution to the current LP
relaxation is integer feasible. (Do not change this parameter without
detailed understanding its purpose.)

double tol obj (default: 1e-7)
Relative tolerance used to check if the objective value in optimal solution
to the current LP relaxation is not better than in the best known inte-
ger feasible solution. (Do not change this parameter without detailed
understanding its purpose.)

double mip gap (default: 0.0)
The relative mip gap tolerance. If the relative mip gap for currently
known best integer feasible solution falls below this tolerance, the solver
terminates the search. This allows obtainig suboptimal integer feasible
solutions if solving the problem to optimality takes too long time.

int tm lim (default: INT MAX)
Searching time limit, in milliseconds.

int out frq (default: 5000)
Output frequency, in milliseconds. This parameter specifies how fre-
quently the solver sends information about the solution process to the
terminal.

int out dly (default: 10000)
Output delay, in milliseconds. This parameter specifies how long the
solver should delay sending information about solution of the current
LP relaxation with the simplex method to the terminal.

void (*cb func)(glp tree *tree, void *info) (default: NULL)
Entry point to the user-defined callback routine. NULL means the ad-
vanced solver interface is not used. For more details see Chapter
“Branch-and-Cut API Routines”.

void *cb info (default: NULL)
Transit pointer passed to the routine cb_func (see above).
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int cb size (default: 0)
The number of extra (up to 256) bytes allocated for each node of the
branch-and-bound tree to store application-specific data. On creating a
node these bytes are initialized by binary zeros.

int presolve (default: GLP OFF)
MIP presolver option:
GLP_ON —enable using the MIP presolver;
GLP_OFF—disable using the MIP presolver.

int binarize (default: GLP OFF)
Binarization option (used only if the presolver is enabled):
GLP_ON —replace general integer variables by binary ones;
GLP_OFF—do not use binarization.

2.9.6 glp init iocp—initialize integer optimizer control pa-
rameters

Synopsis

void glp_init_iocp(glp_iocp *parm);

Description

The routine glp_init_iocp initializes control parameters, which are used
by the branch-and-cut solver, with default values.

Default values of the control parameters are stored in a glp_iocp struc-
ture, which the parameter parm points to.

2.9.7 glp mip status—retrieve status of MIP solution

Synopsis

int glp_mip_status(glp_prob *mip);

Returns

The routine glp_mip_status reports the status of a MIP solution found by
the MIP solver as follows:

GLP_UNDEF MIP solution is undefined.
GLP_OPT MIP solution is integer optimal.
GLP_FEAS MIP solution is integer feasible, however, its optimality

(or non-optimality) has not been proven, perhaps due
to premature termination of the search.
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GLP_NOFEAS problem has no integer feasible solution (proven by the
solver).

2.9.8 glp mip obj val—retrieve objective value

Synopsis

double glp_mip_obj_val(glp_prob *mip);

Returns

The routine glp_mip_obj_val returns value of the objective function for
MIP solution.

2.9.9 glp mip row val—retrieve row value

Synopsis

double glp_mip_row_val(glp_prob *mip, int i);

Returns

The routine glp_mip_row_val returns value of the auxiliary variable asso-
ciated with i-th row for MIP solution.

2.9.10 glp mip col val—retrieve column value

Synopsis

double glp_mip_col_val(glp_prob *mip, int j);

Returns

The routine glp_mip_col_val returns value of the structural variable asso-
ciated with j-th column for MIP solution.
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Chapter 3

Utility API routines

3.1 Problem data reading/writing routines

3.1.1 glp read mps—read problem data in MPS format

Synopsis

int glp_read_mps(glp_prob *lp, int fmt, const void *parm,
const char *fname);

Description

The routine glp_read_mps reads problem data in MPS format from a text
file. (The MPS format is described in Appendix B, page 185.)

The parameter fmt specifies the MPS format version as follows:
GLP_MPS_DECK fixed (ancient) MPS format;
GLP_MPS_FILE free (modern) MPS format.
The parameter parm is reserved for use in the future and must be speci-

fied as NULL.
The character string fname specifies a name of the text file to be read in.

(If the file name ends with suffix ‘.gz’, the file is assumed to be compressed,
in which case the routine glp_read_mps decompresses it “on the fly”.)

Note that before reading data the current content of the problem object
is completely erased with the routine glp_erase_prob.

Returns

If the operation was successful, the routine glp_read_mps returns zero. Oth-
erwise, it prints an error message and returns non-zero.
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3.1.2 glp write mps—write problem data in MPS format

Synopsis

int glp_write_mps(glp_prob *lp, int fmt, const void *parm,
const char *fname);

Description

The routine glp_write_mps writes problem data in MPS format to a text
file. (The MPS format is described in Appendix B, page 185.)

The parameter fmt specifies the MPS format version as follows:
GLP_MPS_DECK fixed (ancient) MPS format;
GLP_MPS_FILE free (modern) MPS format.
The parameter parm is reserved for use in the future and must be speci-

fied as NULL.
The character string fname specifies a name of the text file to be writ-

ten out. (If the file name ends with suffix ‘.gz’, the file is assumed to be
compressed, in which case the routine glp_write_mps performs automatic
compression on writing it.)

Returns

If the operation was successful, the routine glp_write_mps returns zero.
Otherwise, it prints an error message and returns non-zero.

3.1.3 glp read lp—read problem data in CPLEX LP format

Synopsis

int glp_read_lp(glp_prob *lp, const void *parm,
const char *fname);

Description

The routine glp_read_lp reads problem data in CPLEX LP format from a
text file. (The CPLEX LP format is described in Appendix C, page 199.)

The parameter parm is reserved for use in the future and must be speci-
fied as NULL.

The character string fname specifies a name of the text file to be read in.
(If the file name ends with suffix ‘.gz’, the file is assumed to be compressed,
in which case the routine glp_read_lp decompresses it “on the fly”.)
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Note that before reading data the current content of the problem object
is completely erased with the routine glp_erase_prob.

Returns

If the operation was successful, the routine glp_read_lp returns zero. Oth-
erwise, it prints an error message and returns non-zero.

3.1.4 glp write lp—write problem data in CPLEX LP for-
mat

Synopsis

int glp_write_lp(glp_prob *lp, const void *parm,
const char *fname);

Description

The routine glp_write_lp writes problem data in CPLEX LP format to a
text file. (The CPLEX LP format is described in Appendix C, page 199.)

The parameter parm is reserved for use in the future and must be speci-
fied as NULL.

The character string fname specifies a name of the text file to be writ-
ten out. (If the file name ends with suffix ‘.gz’, the file is assumed to be
compressed, in which case the routine glp_write_lp performs automatic
compression on writing it.)

Returns

If the operation was successful, the routine glp_write_lp returns zero. Oth-
erwise, it prints an error message and returns non-zero.
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3.2 Routines for processing MathProg models

3.2.1 Introduction

GLPK supports the GNU MathProg modeling language.1 As a rule, models
written in MathProg are solved with the GLPK LP/MIP stand-alone solver
glpsol (see Appendix D) and do not need any programming with API rou-
tines. However, for various reasons the user may need to process MathProg
models directly in his/her application program, in which case he/she may
use API routines described in this section. These routines provide an inter-
face to the MathProg translator, a component of GLPK, which translates
MathProg models into an internal code and then interprets (executes) this
code.

The processing of a model written in GNU MathProg includes several
steps, which should be performed in the following order:

1. Allocating the workspace. The translator allocates the workspace, an
internal data structure used on all subsequent steps.

2. Reading model section. The translator reads model section and, op-
tionally, data section from a specified text file and translates them
into the internal code. If necessary, on this step data section may be
ignored.

3. Reading data section(s). The translator reads one or more data sec-
tions from specified text file(s) and translates them into the internal
code.

4. Generating the model. The translator executes the internal code to
evaluate the content of the model objects such as sets, parameters,
variables, constraints, and objectives. On this step the execution is
suspended at the solve statement.

5. Building the problem object. The translator obtains all necessary in-
formation from the workspace and builds the standard problem object
(that is, the program object of type glp_prob).

6. Solving the problem. On this step the problem object built on the
previous step is passed to a solver, which solves the problem instance
and stores its solution back to the problem object.

1The GNU MathProg modeling language is a subset of the AMPL language. For its
detailed description see the document “Modeling Language GNU MathProg: Language
Reference” included in the GLPK distribution.
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7. Postsolving the model. The translator copies the solution from the
problem object to the workspace and then executes the internal code
from the solve statement to the end of the model. (If model has no
solve statement, the translator does nothing on this step.)

8. Freeing the workspace. The translator frees all the memory allocated
to the workspace.

Note that the MathProg translator performs no error correction, so if
any of steps 2 to 7 fails (due to errors in the model), the application program
should terminate processing and go to step 8.

Example 1

In this example the program reads model and data sections from input file
egypt.mod2 and writes the model to output file egypt.mps in free MPS
format (see Appendix B). No solution is performed.

/* mplsamp1.c */

#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

int main(void)
{ glp_prob *lp;

glp_tran *tran;
int ret;
lp = glp_create_prob();
tran = glp_mpl_alloc_wksp();
ret = glp_mpl_read_model(tran, "egypt.mod", 0);
if (ret != 0)
{ fprintf(stderr, "Error on translating model\n");

goto skip;
}
ret = glp_mpl_generate(tran, NULL);
if (ret != 0)
{ fprintf(stderr, "Error on generating model\n");

goto skip;
}
glp_mpl_build_prob(tran, lp);
ret = glp_write_mps(lp, GLP_MPS_FILE, NULL, "egypt.mps");

2This is an example model included in the GLPK distribution.
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if (ret != 0)
fprintf(stderr, "Error on writing MPS file\n");

skip: glp_mpl_free_wksp(tran);
glp_delete_prob(lp);
return 0;

}

/* eof */

Example 2

In this example the program reads model section from file sudoku.mod3

ignoring data section in this file, reads alternative data section from file
sudoku.dat, solves the problem instance and passes the solution found back
to the model.

/* mplsamp2.c */

#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

int main(void)
{ glp_prob *mip;

glp_tran *tran;
int ret;
mip = glp_create_prob();
tran = glp_mpl_alloc_wksp();
ret = glp_mpl_read_model(tran, "sudoku.mod", 1);
if (ret != 0)
{ fprintf(stderr, "Error on translating model\n");

goto skip;
}
ret = glp_mpl_read_data(tran, "sudoku.dat");
if (ret != 0)
{ fprintf(stderr, "Error on translating data\n");

goto skip;
}
ret = glp_mpl_generate(tran, NULL);
if (ret != 0)
{ fprintf(stderr, "Error on generating model\n");

goto skip;

3This is an example model which is included in the GLPK distribution along with
alternative data file sudoku.dat.
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}
glp_mpl_build_prob(tran, mip);
glp_simplex(mip, NULL);
glp_intopt(mip, NULL);
ret = glp_mpl_postsolve(tran, mip, GLP_MPL_MIP);
if (ret != 0)

fprintf(stderr, "Error on postsolving model\n");
skip: glp_mpl_free_wksp(tran);

glp_delete_prob(mip);
return 0;

}

/* eof */

3.2.2 glp mpl alloc wksp—allocate the translator workspace

Synopsis

glp_tran *glp_mpl_alloc_wksp(void);

Description

The routine glp_mpl_alloc_wksp allocates the MathProg translator work-
space. (Note that multiple instances of the workspace may be allocated, if
necessary.)

Returns

The routine returns a pointer to the workspace, which should be used in all
subsequent operations.

3.2.3 glp mpl read model—read and translate model section

Synopsis

int glp_mpl_read_model(glp_tran *tran, const char *fname,
int skip);

Description

The routine glp_mpl_read_model reads model section and, optionally, data
section, which may follow the model section, from a text file, whose name
is the character string fname, performs translation of model statements and
data blocks, and stores all the information in the workspace.
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The parameter skip is a flag. If the input file contains the data section
and this flag is non-zero, the data section is not read as if there were no
data section and a warning message is printed. This allows reading data
section(s) from other file(s).

Returns

If the operation is successful, the routine returns zero. Otherwise the routine
prints an error message and returns non-zero.

3.2.4 glp mpl read data—read and translate data section

Synopsis

int glp_mpl_read_data(glp_tran *tran, const char *fname);

Description

The routine glp_mpl_read_data reads data section from a text file, whose
name is the character string fname, performs translation of data blocks, and
stores the data read in the translator workspace. If necessary, this routine
may be called more than once.

Returns

If the operation is successful, the routine returns zero. Otherwise the routine
prints an error message and returns non-zero.

3.2.5 glp mpl generate—generate the model

Synopsis

int glp_mpl_generate(glp_tran *tran, const char *fname);

Description

The routine glp_mpl_generate generates the model using its description
stored in the translator workspace. This operation means generating all
variables, constraints, and objectives, executing check and display state-
ments, which precede the solve statement (if it is presented).

The character string fname specifies the name of an output text file, to
which output produced by display statements should be written. If fname
is NULL, the output is sent to the terminal.
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Returns

If the operation is successful, the routine returns zero. Otherwise the routine
prints an error message and returns non-zero.

3.2.6 glp mpl build prob—build problem instance from the
model

Synopsis

void glp_mpl_build_prob(glp_tran *tran, glp_prob *prob);

Description

The routine glp_mpl_build_prob obtains all necessary information from
the translator workspace and stores it in the specified problem object prob.
Note that before building the current content of the problem object is erased
with the routine glp_erase_prob.

3.2.7 glp mpl postsolve—postsolve the model

Synopsis

int glp_mpl_postsolve(glp_tran *tran, glp_prob *prob,
int sol);

Description

The routine glp_mpl_postsolve copies the solution from the specified prob-
lem object prob to the translator workspace and then executes all the re-
maining model statements, which follow the solve statement.

The parameter sol specifies which solution should be copied from the
problem object to the workspace as follows:

GLP_SOL basic solution;
GLP_IPT interior-point solution;
GLP_MIP mixed integer solution.

Returns

If the operation is successful, the routine returns zero. Otherwise the routine
prints an error message and returns non-zero.

83



3.2.8 glp mpl free wksp—free the translator workspace

Synopsis

void glp_mpl_free_wksp(glp_tran *tran);

Description

The routine glp_mpl_free_wksp frees all the memory allocated to the trans-
lator workspace. It also frees all other resources, which are still used by the
translator.
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3.3 Problem solution reading/writing routines

3.3.1 lpx print sol—write basic solution in printable format

Synopsis

int lpx_print_sol(glp_prob *lp, char *fname);

Description

The routine lpx_print_sol writes the current basic solution of an LP
problem, which is specified by the pointer lp, to a text file, whose name is
the character string fname, in printable format.

Information reported by the routine lpx_print_sol is intended mainly
for visual analysis.

Returns

If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

3.3.2 lpx print sens bnds—write bounds sensitivity informa-
tion

Synopsis

int lpx_print_sens_bnds(glp_prob *lp, char *fname);

Description

The routine lpx_print_sens_bnds writes the bounds for objective coeffi-
cients, right-hand-sides of constraints, and variable bounds for which the
current optimal basic solution remains optimal (for LP only).

The LP is given by the pointer lp, and the output is written to the file
specified by fname. The current contents of the file will be overwritten.

Information reported by the routine lpx_print_sens_bnds is intended
mainly for visual analysis.

Returns

If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.
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3.3.3 lpx print ips—write interior-point solution in printable
format

Synopsis

int lpx_print_ips(glp_prob *lp, char *fname);

Description

The routine lpx_print_ips writes the current interior point solution of an
LP problem, which the parameter lp points to, to a text file, whose name
is the character string fname, in printable format.

Information reported by the routine lpx_print_ips is intended mainly
for visual analysis.

Returns

If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.

3.3.4 lpx print mip—write MIP solution in printable format

Synopsis

int lpx_print_mip(glp_prob *lp, char *fname);

Description

The routine lpx_print_mip writes a best known integer solution of a MIP
problem, which is specified by the pointer lp, to a text file, whose name is
the character string fname, in printable format.

Information reported by the routine lpx_print_mip is intended mainly
for visual analysis.

Returns

If no errors occurred, the routine returns zero. Otherwise the routine prints
an error message and returns non-zero.
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3.3.5 glp read sol—read basic solution from text file

Synopsis

int glp_read_sol(glp_prob *lp, const char *fname);

Description

The routine glp_read_sol reads basic solution from a text file whose name
is specified by the parameter fname into the problem object.

For the file format see description of the routine glp_write_sol.

Returns

On success the routine returns zero, otherwise non-zero.

3.3.6 glp write sol—write basic solution to text file

Synopsis

int glp_write_sol(glp_prob *lp, const char *fname);

Description

The routine glp_write_sol writes the current basic solution to a text file
whose name is specified by the parameter fname. This file can be read back
with the routine glp_read_sol.

Returns

On success the routine returns zero, otherwise non-zero.

File format

The file created by the routine glp_write_sol is a plain text file, which
contains the following information:

m n
p_stat d_stat obj_val
r_stat[1] r_prim[1] r_dual[1]
. . .
r_stat[m] r_prim[m] r_dual[m]
c_stat[1] c_prim[1] c_dual[1]
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. . .
c_stat[n] c_prim[n] c_dual[n]

where:
m is the number of rows (auxiliary variables);
n is the number of columns (structural variables);
p_stat is the primal status of the basic solution (GLP_UNDEF = 1, GLP_FEAS
= 2, GLP_INFEAS = 3, or GLP_NOFEAS = 4);
d_stat is the dual status of the basic solution (GLP_UNDEF = 1, GLP_FEAS
= 2, GLP_INFEAS = 3, or GLP_NOFEAS = 4);
obj_val is the objective value;
r_stat[i], i = 1, . . . , m, is the status of i-th row (GLP_BS = 1, GLP_NL =
2, GLP_NU = 3, GLP_NF = 4, or GLP_NS = 5);
r_prim[i], i = 1, . . . , m, is the primal value of i-th row;
r_dual[i], i = 1, . . . , m, is the dual value of i-th row;
c_stat[j], j = 1, . . . , n, is the status of j-th column (GLP_BS = 1, GLP_NL
= 2, GLP_NU = 3, GLP_NF = 4, or GLP_NS = 5);
c_prim[j], j = 1, . . . , n, is the primal value of j-th column;
c_dual[j], j = 1, . . . , n, is the dual value of j-th column.

3.3.7 glp read ipt—read interior-point solution from text file

Synopsis

int glp_read_ipt(glp_prob *lp, const char *fname);

Description

The routine glp_read_ipt reads interior-point solution from a text file
whose name is specified by the parameter fname into the problem object.

For the file format see description of the routine glp_write_ipt.

Returns

On success the routine returns zero, otherwise non-zero.
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3.3.8 glp write ipt—write interior-point solution to text file

Synopsis

int glp_write_ipt(glp_prob *lp, const char *fname);

Description

The routine glp_write_ipt writes the current interior-point solution to a
text file whose name is specified by the parameter fname. This file can be
read back with the routine glp_read_ipt.

Returns

On success the routine returns zero, otherwise non-zero.

File format

The file created by the routine glp_write_ipt is a plain text file, which
contains the following information:

m n
stat obj_val
r_prim[1] r_dual[1]
. . .
r_prim[m] r_dual[m]
c_prim[1] c_dual[1]
. . .
c_prim[n] c_dual[n]

where:
m is the number of rows (auxiliary variables);
n is the number of columns (structural variables);
stat is the solution status (GLP_UNDEF = 1 or GLP_OPT = 5);
obj_val is the objective value;
r_prim[i], i = 1, . . . , m, is the primal value of i-th row;
r_dual[i], i = 1, . . . , m, is the dual value of i-th row;
c_prim[j], j = 1, . . . , n, is the primal value of j-th column;
c_dual[j], j = 1, . . . , n, is the dual value of j-th column.
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3.3.9 glp read mip—read MIP solution from text file

Synopsis

int glp_read_mip(glp_prob *mip, const char *fname);

Description

The routine glp_read_mip reads MIP solution from a text file whose name
is specified by the parameter fname into the problem object.

For the file format see description of the routine glp_write_mip.

Returns

On success the routine returns zero, otherwise non-zero.

3.3.10 glp write mip—write MIP solution to text file

Synopsis

int glp_write_mip(glp_prob *mip, const char *fname);

Description

The routine glp_write_mip writes the current MIP solution to a text file
whose name is specified by the parameter fname. This file can be read back
with the routine glp_read_mip.

Returns

On success the routine returns zero, otherwise non-zero.

File format

The file created by the routine glp_write_sol is a plain text file, which
contains the following information:

m n
stat obj_val
r_val[1]
. . .
r_val[m]
c_val[1]
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. . .
c_val[n]

where:
m is the number of rows (auxiliary variables);
n is the number of columns (structural variables);
stat is the solution status (GLP_UNDEF = 1, GLP_FEAS = 2, GLP_NOFEAS =
4, or GLP_OPT = 5);
obj_val is the objective value;
r_val[i], i = 1, . . . ,m, is the value of i-th row;
c_val[j], j = 1, . . . , n, is the value of j-th column.
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Chapter 4

Advanced API Routines

4.1 LP basis and simplex tableau routines

4.1.1 Background

Using vector and matrix notations LP problem (1.1)—(1.3) (see Section 1.1,
page 11) can be stated as follows:

minimize (or maximize)

z = cT xS + c0 (3.1)

subject to linear constraints

xR = AxS (3.2)

and bounds of variables

lR ≤ xR ≤ uR

lS ≤ xS ≤ uS
(3.3)

where:
xR = (x1, x2, . . . , xm) is the vector of auxiliary variables;
xS = (xm+1, xm+2, . . . , xm+n) is the vector of structural variables;
z is the objective function;
c = (c1, c2, . . . , cn) is the vector of objective coefficients;
c0 is the constant term (“shift”) of the objective function;
A = (a11, a12, . . . , amn) is the constraint matrix;
lR = (l1, l2, . . . , lm) is the vector of lower bounds of auxiliary variables;
uR = (u1, u2, . . . , um) is the vector of upper bounds of auxiliary variables;
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lS = (lm+1, lm+2, . . . , lm+n) is the vector of lower bounds of structural vari-
ables;
uS = um+1, um+2, . . . , um+n is the vector of upper bounds of structural
variables.

From the simplex method’s standpoint there is no difference between
auxiliary and structural variables. This allows combining all these variables
into one vector that leads to the following problem statement:

minimize (or maximize)

z = (0 | c)T x + c0 (3.4)

subject to linear constraints

(I | −A)x = 0 (3.5)

and bounds of variables

l ≤ x ≤ u (3.6)

where:
x = (xR | xS) is the (m + n)-vector of (all) variables;
(0 | c) is the (m + n)-vector of objective coefficients;1

(I | −A) is the augmented constraint m× (m + n)-matrix;2

l = (lR | lS) is the (m + n)-vector of lower bounds of (all) variables;
u = (uR | uS) is the (m + n)-vector of upper bounds of (all) variables.

By definition an LP basic solution geometrically is a point in the space
of all variables, which is the intersection of planes corresponding to active
constraints3. The space of all variables has the dimension m+n, therefore, to
define some basic solution we have to define m + n active constraints. Note
that m constraints (3.5) being linearly independent equalities are always
active, so remaining n active constraints can be chosen only from bound
constraints (3.6).

A variable is called non-basic, if its (lower or upper) bound is active,
otherwise it is called basic. Since, as was said above, exactly n bound con-
straints must be active, in any basic solution there are always n non-basic

1Subvector 0 corresponds to objective coefficients at auxiliary variables.
2Note that due to auxiliary variables matrix (I |−A) contains the unity submatrix and

therefore has full rank. This means, in particular, that the system (3.5) has no linearly
dependent constraints.

3A constraint is called active if in a given point it is satisfied as equality, otherwise it
is called inactive.
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variables and m basic variables. (Note that a free variable also can be
non-basic. Although such variable has no bounds, we can think it as the
difference between two non-negative variables, which both are non-basic in
this case.)

Now consider how to determine numeric values of all variables for a given
basic solution.

Let Π be an appropriate permutation matrix of the order (m+n). Then
we can write: (

xB

xN

)
= Π

(
xR

xS

)
= Πx, (3.7)

where xB is the vector of basic variables, xN is the vector of non-basic
variables, x = (xR | xS) is the vector of all variables in the original order. In
this case the system of linear constraints (3.5) can be rewritten as follows:

(I | −A)ΠT Πx = 0 ⇒ (B | N)

(
xB

xN

)
= 0, (3.8)

where
(B | N) = (I | −A)ΠT . (3.9)

Matrix B is a square non-singular m ×m-matrix, which is composed from
columns of the augmented constraint matrix corresponding to basic vari-
ables. It is called the basis matrix or simply the basis. Matrix N is a rect-
angular m × n-matrix, which is composed from columns of the augmented
constraint matrix corresponding to non-basic variables.

From (3.8) it follows that:

BxB + NxN = 0, (3.10)

therefore,
xB = −B−1NxN . (3.11)

Thus, the formula (3.11) shows how to determine numeric values of basic
variables xB assuming that non-basic variables xN are fixed on their active
bounds.

The m× n-matrix
Ξ = −B−1N, (3.12)

which appears in (3.11), is called the simplex tableau.4 It shows how basic
variables depend on non-basic variables:

xB = ΞxN . (3.13)
4This definition corresponds to the GLPK implementation.
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The system (3.13) is equivalent to the system (3.5) in the sense that they
both define the same set of points in the space of (primal) variables, which
satisfy to these systems. If, moreover, values of all basic variables satisfy
to their bound constraints (3.3), the corresponding basic solution is called
(primal) feasible, otherwise (primal) infeasible. It is understood that any
(primal) feasible basic solution satisfy to all constraints (3.2) and (3.3).

The LP theory says that if LP has optimal solution, it has (at least one)
basic feasible solution, which corresponds to the optimum. And the most
natural way to determine whether a given basic solution is optimal or not
is to use the Karush—Kuhn—Tucker optimality conditions.

For the problem statement (3.4)—(3.6) the optimality conditions are the
following:5

(I | −A)x = 0 (3.14)

(I | −A)T π + λl + λu = ∇z = (0 | c)T (3.15)

l ≤ x ≤ u (3.16)

λl ≥ 0, λu ≤ 0 (minimization) (3.17)

λl ≤ 0, λu ≥ 0 (maximization) (3.18)

(λl)k(xk − lk) = 0, (λu)k(xk − uk) = 0, k = 1, 2, . . . ,m + n (3.19)

where: π = (π1, π2, . . . , πm) is a m-vector of Lagrange multipliers for equal-
ity constraints (3.5); λl = [(λl)1, (λl)2, . . . , (λl)n] is a n-vector of Lagrange
multipliers for lower bound constraints (3.6); λu = [(λu)1, (λu)2, . . . , (λu)n]
is a n-vector of Lagrange multipliers for upper bound constraints (3.6).

Condition (3.14) is the primal (original) system of equality constraints
(3.5).

Condition (3.15) is the dual system of equality constraints. It requires
the gradient of the objective function to be a linear combination of normals
to the planes defined by constraints of the original problem.

Condition (3.16) is the primal (original) system of bound constraints
(3.6).

Condition (3.17) (or (3.18) in case of maximization) is the dual system
of bound constraints.

Condition (3.19) is the complementary slackness condition. It requires,
for each original (auxiliary or structural) variable xk, that either its (lower or
upper) bound must be active, or zero bound of the corresponding Lagrange
multiplier ((λl)k or (λu)k) must be active.

5These conditions can be appiled to any solution, not only to a basic solution.
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In GLPK two multipliers (λl)k and (λu)k for each primal (original) vari-
able xk, k = 1, 2, . . . , m + n, are combined into one multiplier:

λk = (λl)k + (λu)k, (3.20)

which is called a dual variable for xk. This cannot lead to the ambiguity,
because both lower and upper bounds of xk cannot be active at the same
time,6 so at least one of (λl)k and (λu)k must be equal to zero, and because
these multipliers have different signs, the combined multiplier, which is their
sum, uniquely defines each of them.

Using dual variables λk the dual system of bound constraints (3.17) and
(3.18) can be written in the form of so called “rule of signs” as follows:

Original bound Minimization Maximization
constraint (λl)k (λu)k (λl)k + (λu)k (λl)k (λu)k (λl)k + (λu)k

−∞ < xk < +∞ = 0 = 0 λk = 0 = 0 = 0 λk = 0
xk ≥ lk ≥ 0 = 0 λk ≥ 0 ≤ 0 = 0 λk ≤ 0
xk ≤ uk = 0 ≤ 0 λk ≤ 0 = 0 ≥ 0 λk ≥ 0

lk ≤ xk ≤ uk ≥ 0 ≤ 0 −∞<λk <+∞ ≤ 0 ≥ 0 −∞<λk <+∞
xk = lk = uk ≥ 0 ≤ 0 −∞<λk <+∞ ≤ 0 ≥ 0 −∞<λk <+∞

May note that each primal variable xk has its dual counterpart λk and
vice versa. This allows applying the same partition for the vector of dual
variables as (3.7): (

λB

λN

)
= Πλ, (3.21)

where λB is a vector of dual variables for basic variables xB, λN is a vector
of dual variables for non-basic variables xN .

By definition, bounds of basic variables are inactive constraints, so in
any basic solution λB = 0. Corresponding values of dual variables λN for
non-basic variables xN can be determined in the following way. From the
dual system (3.15) we have:

(I | −A)T π + λ = (0 | c)T , (3.22)

so multiplying both sides of (3.22) by matrix Π gives:

Π(I | −A)T π + Πλ = Π(0 | c)T . (3.23)
6If xk is a fixed variable, we can think it as double-bounded variable lk ≤ xk ≤ uk,

where lk = uk.
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From (3.9) it follows that

Π(I | −A)T = [(I | −A)ΠT ]T = (B | N)T . (3.24)

Further, we can apply the partition (3.7) also to the vector of objective
coefficients (see (3.4)): (

cB

cN

)
= Π

(
0
c

)
, (3.25)

where cB is a vector of objective coefficients at basic variables, cN is a vector
of objective coefficients at non-basic variables. Now, substituting (3.24),
(3.21), and (3.25) into (3.23), leads to:

(B | N)T π + (λB | λN )T = (cB | cN )T , (3.26)

and transposing both sides of (3.26) gives the system:
(

BT

NT

)
π +

(
λB

λN

)
=

(
cB

cT

)
, (3.27)

which can be written as follows:
{

BT π + λB = cB

NT π + λN = cN
(3.28)

Lagrange multipliers π = (πi) correspond to equality constraints (3.5) and
therefore can have any sign. This allows resolving the first subsystem of
(3.28) as follows:7

π = B−T (cB − λB) = −B−T λB + B−T cB, (3.29)

and substitution of π from (3.29) into the second subsystem of (3.28) gives:

λN = −NT π + cN = NT B−T λB + (cN −NT B−T cB). (3.30)

The latter system can be written in the following final form:

λN = −ΞT λB + d, (3.31)

where Ξ is the simplex tableau (see (3.12)), and

d = cN −NT B−T cB = cN + ΞT cB (3.32)

is the vector of so called reduced costs of non-basic variables.
7B−T means (BT )−1 = (B−1)T .

97



Above it was said that in any basic solution λB = 0, so λN = d as it
follows from (3.31).

The system (3.31) is equivalent to the system (3.15) in the sense that
they both define the same set of points in the space of dual variables λ,
which satisfy to these systems. If, moreover, values of all dual variables
λN (i.e. reduced costs d) satisfy to their bound constraints (i.e. to the
“rule of signs”; see the table above), the corresponding basic solution is
called dual feasible, otherwise dual infeasible. It is understood that any dual
feasible solution satisfy to all constraints (3.15) and (3.17) (or (3.18) in case
of maximization).

It can be easily shown that the complementary slackness condition (3.19)
is always satisfied for any basic solution. Therefore, a basic solution8 is
optimal if and only if it is primal and dual feasible, because in this case it
satifies to all the optimality conditions (3.14)—(3.19).

The meaning of reduced costs d = (dj) of non-basic variables can be
explained in the following way. From (3.4), (3.7), and (3.25) it follows that:

z = cT
BxB + cT

NxN + c0. (3.33)

Substituting xB from (3.11) into (3.33) we can eliminate basic variables and
express the objective only through non-basic variables:

z = cT
B(−B−1NxN ) + cT

NxN + c0 =

= (cT
N − cT

BB−1N)xN + c0 =

= (cN −NT B−T cB)T xN + c0 =

= dT xN + c0.

(3.34)

From (3.34) it is seen that reduced cost dj shows how the objective function
z depends on non-basic variable (xN )j in the neighborhood of the current
basic solution, i.e. while the current basis remains unchanged.

8It is assumed that a complete basic solution has the form (x, λ), i.e. it includes primal
as well as dual variables.
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4.1.2 glp bf exists—check if the basis factorization exists

Synopsis

int glp_bf_exists(glp_prob *lp);

Returns

If the basis factorization for the current basis associated with the specified
problem object exists and therefore is available for computations, the routine
glp_bf_exists returns non-zero. Otherwise the routine returns zero.

Comments

Let the problem object have m rows and n columns. In GLPK the basis
matrix B is a square non-singular matrix of the order m, whose columns
correspond to basic (auxiliary and/or structural) variables. It is defined by
the following main equality:9

(B | N) = (I | −A)ΠT ,

where I is the unity matrix of the order m, whose columns correspond to
auxiliary variables; A is the original constraint m×n-matrix, whose columns
correspond to structural variables; (I | −A) is the augmented constraint
m× (m + n)-matrix, whose columns correspond to all (auxiliary and struc-
tural) variables following in the original order; Π is a permutation matrix
of the order m + n; and N is a rectangular m × n-matrix, whose columns
correspond to non-basic (auxiliary and/or structural) variables.

For various reasons it may be necessary to solve linear systems with
matrix B. To provide this possibility the GLPK implementation maintains
an invertable form of B (that is, some representation of B−1) called the
basis factorization, which is an internal component of the problem object.
Typically, the basis factorization is computed by the simplex solver, which
keeps it in the problem object to be available for other computations.

Should note that any changes in the problem object, which affects the
basis matrix (e.g. changing the status of a row or column, changing a basic
column of the constraint matrix, removing an active constraint, etc.), inval-
idates the basis factorization. So before calling any API routine, which uses
the basis factorization, the application program must make sure (using the
routine glp_bf_exists) that the factorization exists and therefore available
for computations.

9For more details see Subsection 4.1.1, page 92.
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4.1.3 glp factorize—compute the basis factorization

Synopsis

int glp_factorize(glp_prob *lp);

Description

The routine glp_factorize computes the basis factorization for the current
basis associated with the specified problem object.10

The basis factorization is computed from “scratch” even if it exists, so
the application program may use the routine glp_bf_exists, and, if the
basis factorization already exists, not to call the routine glp_factorize to
prevent an extra work.

The routine glp_factorize does not compute components of the basic
solution (i.e. primal and dual values).

Returns

0 The basis factorization has been successfully computed.

GLP_EBADB The basis matrix is invalid, because the number of basic
(auxiliary and structural) variables is not the same as the
number of rows in the problem object.

GLP_ESING The basis matrix is singular within the working precision.

GLP_ECOND The basis matrix is ill-conditioned, i.e. its condition num-
ber is too large.

10The current basis is defined by the current statuses of rows (auxiliary variables) and
columns (structural variables).
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4.1.4 glp bf updated—check if the basis factorization has
been updated

Synopsis

int glp_bf_updated(glp_prob *lp);

Returns

If the basis factorization has been just computed from “scratch”, the rou-
tine glp_bf_updated returns zero. Otherwise, if the factorization has been
updated at least once, the routine returns non-zero.

Comments

Updating the basis factorization means recomputing it to reflect changes in
the basis matrix. For example, on every iteration of the simplex method
some column of the current basis matrix is replaced by a new column that
gives a new basis matrix corresponding to the adjacent basis. In this case
computing the basis factorization for the adjacent basis from “scratch” (as
the routine glp_factorize does) would be too time-consuming.

On the other hand, since the basis factorization update is a numeric
computational procedure, applying it many times may lead to accumulating
round-off errors. Therefore the basis is periodically refactorized (reinverted)
from “scratch” (with the routine glp_factorize) that allows improving its
numerical properties.

The routine glp_bf_updated allows determining if the basis factoriza-
tion has been updated at least once since it was computed from “scratch”.
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4.1.5 glp get bfcp—retrieve basis factorization control pa-
rameters

Synopsis

void glp_get_bfcp(glp_prob *lp, glp_bfcp *parm);

Description

The routine glp_get_bfcp retrieves control parameters, which are used on
computing and updating the basis factorization associated with the specified
problem object.

Current values of the control parameters are stored in a glp_bfcp struc-
ture, which the parameter parm points to. For a detailed description of the
structure glp_bfcp see comments to the routine glp_set_bfcp in the next
subsection.

Comments

The purpose of the routine glp_get_bfcp is two-fold. First, it allows the
application program obtaining current values of control parameters used by
internal GLPK routines, which compute and update the basis factorization.

The second purpose of this routine is to provide proper values for all
fields of the structure glp_bfcp in the case when the application program
needs to change some control parameters.

4.1.6 Change basis factorization control parameters

Synopsis

void glp_set_bfcp(glp_prob *lp, const glp_bfcp *parm);

Description

The routine glp_set_bfcp changes control parameters, which are used by
internal GLPK routines on computing and updating the basis factorization
associated with the specified problem object.

New values of the control parameters should be passed in a structure
glp_bfcp, which the parameter parm points to. For a detailed description
of the structure glp_bfcp see paragraph “Control parameters” below.

The parameter parm can be specified as NULL, in which case all control
parameters are reset to their default values.
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Comments

Before changing some control parameters with the routine glp_set_bfcp the
application program should retrieve current values of all control parameters
with the routine glp_get_bfcp. This is needed for backward compatibil-
ity, because in the future there may appear new members in the structure
glp_bfcp.

Note that new values of control parameters come into effect on a next
computation of the basis factorization, not immediately.

Example

glp_prob *lp;
glp_bfcp parm;
. . .
/* retrieve current values of control parameters */
glp_get_bfcp(lp, &parm);
/* change the threshold pivoting tolerance */
parm.piv_tol = 0.05;
/* set new values of control parameters */
glp_set_bfcp(lp, &parm);
. . .

Control parameters

This paragraph describes all basis factorization control parameters currently
used in the package. Symbolic names of control parameters are names of
corresponding members in the structure glp_bfcp.

int type (default: GLP BF FT)
Basis factorization type:
GLP_BF_FT—LU + Forrest–Tomlin update;
GLP_BF_BG—LU + Schur complement + Bartels–Golub update;
GLP_BF_GR—LU + Schur complement + Givens rotation update.
In case of GLP_BF_FT the update is applied to matrix U , while in cases
of GLP_BF_BG and GLP_BF_GR the update is applied to the Schur com-
plement.

int lu size (default: 0)
The initial size of the Sparse Vector Area, in non-zeros, used on com-
puting LU -factorization of the basis matrix for the first time. If this
parameter is set to 0, the initial SVA size is determined automatically.
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double piv tol (default: 0.10)
Threshold pivoting (Markowitz) tolerance, 0 < piv_tol < 1, used on
computing LU -factorization of the basis matrix. Element uij of the ac-
tive submatrix of factor U fits to be pivot if it satisfies to the stability
criterion |uij | >= piv tol · max |ui∗|, i.e. if it is not very small in the
magnitude among other elements in the same row. Decreasing this pa-
rameter may lead to better sparsity at the expense of numerical accuracy,
and vice versa.

int piv lim (default: 4)
This parameter is used on computing LU -factorization of the basis ma-
trix and specifies how many pivot candidates needs to be considered on
choosing a pivot element, piv_lim ≥ 1. If piv_lim candidates have been
considered, the pivoting routine prematurely terminates the search with
the best candidate found.

int suhl (default: GLP ON)
This parameter is used on computing LU -factorization of the basis ma-
trix. Being set to GLP ON it enables applying the following heuristic
proposed by Uwe Suhl: if a column of the active submatrix has no eligi-
ble pivot candidates, it is no more considered until it becomes a column
singleton. In many cases this allows reducing the time needed for pivot
searching. To disable this heuristic the parameter suhl should be set to
GLP OFF.

double eps tol (default: 1e-15)
Epsilon tolerance, eps_tol ≥ 0, used on computing LU -factorization of
the basis matrix. If an element of the active submatrix of factor U is
less than eps_tol in the magnitude, it is replaced by exact zero.

double max gro (default: 1e+10)
Maximal growth of elements of factor U , max_gro ≥ 1, allowable on
computing LU -factorization of the basis matrix. If on some elimination
step the ratio ubig/bmax (where ubig is the largest magnitude of elements
of factor U appeared in its active submatrix during all the factorization
process, bmax is the largest magnitude of elements of the basis matrix to
be factorized), the basis matrix is considered as ill-conditioned.
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int nfs max (default: 50)
Maximal number of additional row-like factors (entries of the eta file),
nfs_max ≥ 1, which can be added to LU -factorization of the basis matrix
on updating it with the Forrest–Tomlin technique. This parameter is
used only once, before LU -factorization is computed for the first time,
to allocate working arrays. As a rule, each update adds one new factor
(however, some updates may need no addition), so this parameter limits
the number of updates between refactorizations.

double upd tol (default: 1e-6)
Update tolerance, 0 < upd_tol < 1, used on updating LU -factorization
of the basis matrix with the Forrest–Tomlin technique. If after updat-
ing the magnitude of some diagonal element ukk of factor U becomes
less than upd tol · max(|uk∗|, |u∗k|), the factorization is considered as
inaccurate.

int nrs max (default: 50)
Maximal number of additional rows and columns, nrs_max ≥ 1, which
can be added to LU -factorization of the basis matrix on updating it with
the Schur complement technique. This parameter is used only once, be-
fore LU -factorization is computed for the first time, to allocate working
arrays. As a rule, each update adds one new row and column (how-
ever, some updates may need no addition), so this parameter limits the
number of updates between refactorizations.

int rs size (default: 0)
The initial size of the Sparse Vector Area, in non-zeros, used to store
non-zero elements of additional rows and columns introduced on up-
dating LU -factorization of the basis matrix with the Schur complement
technique. If this parameter is set to 0, the initial SVA size is determined
automatically.
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4.1.7 glp get bhead—retrieve the basis header information

Synopsis

int glp_get_bhead(glp_prob *lp, int k);

Description

The routine glp_get_bhead returns the basis header information for the
current basis associated with the specified problem object.

Returns

If basic variable (xB)k, 1 ≤ k ≤ m, is i-th auxiliary variable (1 ≤ i ≤ m), the
routine returns i. Otherwise, if (xB)k is j-th structural variable (1 ≤ j ≤ n),
the routine returns m+j. Here m is the number of rows and n is the number
of columns in the problem object.

Comments

Sometimes the application program may need to know which original (aux-
iliary and structural) variable correspond to a given basic variable, or, that
is the same, which column of the augmented constraint matrix (I | −A)
correspond to a given column of the basis matrix B.

The correspondence is defined as follows:11

(
xB

xN

)
= Π

(
xR

xS

)
⇔

(
xR

xS

)
= ΠT

(
xB

xN

)
,

where xB is the vector of basic variables, xN is the vector of non-basic
variables, xR is the vector of auxiliary variables following in their original
order,12 xS is the vector of structural variables following in their original
order, Π is a permutation matrix (which is a component of the basis factor-
ization).

Thus, if (xB)k = (xR)i is i-th auxiliary variable, the routine returns i,
and if (xB)k = (xS)j is j-th structural variable, the routine returns m + j,
where m is the number of rows in the problem object.

11For more details see Subsection 4.1.1, page 92.
12The original order of auxiliary and structural variables is defined by the ordinal num-

bers of corresponding rows and columns in the problem object.
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4.1.8 glp get row bind—retrieve row index in the basis
header

Synopsis

int glp_get_row_bind(glp_prob *lp, int i);

Returns

The routine glp_get_row_bind returns the index k of basic variable (xB)k,
1 ≤ k ≤ m, which is i-th auxiliary variable (that is, the auxiliary variable
corresponding to i-th row), 1 ≤ i ≤ m, in the current basis associated with
the specified problem object, where m is the number of rows. However, if
i-th auxiliary variable is non-basic, the routine returns zero.

Comments

The routine glp_get_row_bind is an inverse to the routine glp_get_bhead:
if glp_get_bhead(lp, k) returns i, glp_get_row_bind(lp, i) returns k, and
vice versa.

4.1.9 glp get col bind—retrieve column index in the basis
header

Synopsis

int glp_get_col_bind(glp_prob *lp, int j);

Returns

The routine glp_get_col_bind returns the index k of basic variable (xB)k,
1 ≤ k ≤ m, which is j-th structural variable (that is, the structural variable
corresponding to j-th column), 1 ≤ j ≤ n, in the current basis associated
with the specified problem object, where m is the number of rows, n is the
number of columns. However, if j-th structural variable is non-basic, the
routine returns zero.

Comments

The routine glp_get_col_bind is an inverse to the routine glp_get_bhead:
if glp_get_bhead(lp, k) returns m + j, glp_get_col_bind(lp, j) returns k,
and vice versa.
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4.1.10 glp ftran—perform forward transformation

Synopsis

void glp_ftran(glp_prob *lp, double x[]);

Description

The routine glp_ftran performs forward transformation (FTRAN), i.e. it
solves the system Bx = b, where B is the basis matrix associated with the
specified problem object, x is the vector of unknowns to be computed, b is
the vector of right-hand sides.

On entry to the routine elements of the vector b should be stored in
locations x[1], . . . , x[m], where m is the number of rows. On exit the
routine stores elements of the vector x in the same locations.

4.1.11 glp btran—perform backward transformation

Synopsis

void glp_btran(glp_prob *lp, double x[]);

Description

The routine glp_btran performs backward transformation (BTRAN), i.e.
it solves the system BT x = b, where BT is a matrix transposed to the basis
matrix B associated with the specified problem object, x is the vector of
unknowns to be computed, b is the vector of right-hand sides.

On entry to the routine elements of the vector b should be stored in
locations x[1], . . . , x[m], where m is the number of rows. On exit the
routine stores elements of the vector x in the same locations.
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4.1.12 lpx warm up—“warm up” LP basis

Synopsis

int lpx_warm_up(glp_prob *lp);

Description

The routine lpx_warm_up “warms up” the LP basis for the specified problem
object using current statuses assigned to rows and columns (i.e. to auxiliary
and structural variables).

“Warming up” includes reinverting (factorizing) the basis matrix (if
neccesary), computing primal and dual components as well as determining
primal and dual statuses of the basic solution.

Returns

The routine lpx_warm_up returns one of the following exit codes:
LPX_E_OK the LP basis has been successfully “warmed up”.
LPX_E_EMPTY the problem has no rows and/or no columns.
LPX_E_BADB the LP basis is invalid, because the number of basic

variables is not the same as the number of rows.
LPX_E_SING the basis matrix is numerically singular or ill-condi-

tioned.

4.1.13 glp eval tab row—compute row of the tableau

Synopsis

int glp_eval_tab_row(glp_prob *lp, int k, int ind[],
double val[]);

Description

The routine glp_eval_tab_row computes a row of the current simplex
tableau (see Subsection 3.1.1, formula (3.12)), which (row) corresponds to
some basic variable specified by the parameter k as follows: if 1 ≤ k ≤ m,
the basic variable is k-th auxiliary variable, and if m + 1 ≤ k ≤ m + n, the
basic variable is (k −m)-th structural variable, where m is the number of
rows and n is the number of columns in the specified problem object. The
basis factorization must exist.
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The computed row shows how the specified basic variable depends on
non-basic variables:

xk = (xB)i = ξi1(xN )1 + ξi2(xN )2 + . . . + ξin(xN )n,

where ξi1, ξi2, . . . , ξin are elements of the simplex table row, (xN )1, (xN )2,
. . . , (xN )n are non-basic (auxiliary and structural) variables.

The routine stores column indices and corresponding numeric values of
non-zero elements of the computed row in unordered sparse format in loca-
tions ind[1], . . . , ind[len] and val[1], . . . , val[len], respectively, where
0 ≤ len ≤ n is the number of non-zero elements in the row returned on exit.

Element indices stored in the array ind have the same sense as index k,
i.e. indices 1 to m denote auxiliary variables while indices m + 1 to m + n
denote structural variables (all these variables are obviously non-basic by
definition).

Returns

The routine glp_eval_tab_row returns len, which is the number of non-
zero elements in the simplex table row stored in the arrays ind and val.

Comments

A row of the simplex table is computed as follows. At first, the routine checks
that the specified variable xk is basic and uses the permutation matrix Π
(3.7) to determine index i of basic variable (xB)i, which corresponds to xk.

The row to be computed is i-th row of the matrix Ξ (3.12), therefore:

ξi = eT
i Ξ = −eT

i B−1N = −(B−T ei)T N,

where ei is i-th unity vector. So the routine performs BTRAN to obtain
i-th row of the inverse B−1:

%i = B−T ei,

and then computes elements of the simplex table row as inner products:

ξij = −%T
i Nj , j = 1, 2, . . . , n,

where Nj is j-th column of matrix N (3.9), which (column) corresponds to
non-basic variable (xN )j . The permutation matrix Π is used again to convert
indices j of non-basic columns to original ordinal numbers of auxiliary and
structural variables.
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4.1.14 glp eval tab col—compute column of the tableau

Synopsis

int glp_eval_tab_col(glp_prob *lp, int k, int ind[],
double val[]);

Description

The routine glp_eval_tab_col computes a column of the current simplex
tableau (see Subsection 3.1.1, formula (3.12)), which (column) corresponds
to some non-basic variable specified by the parameter k: if 1 ≤ k ≤ m, the
non-basic variable is k-th auxiliary variable, and if m + 1 ≤ k ≤ m + n, the
non-basic variable is (k−m)-th structural variable, where m is the number
of rows and n is the number of columns in the specified problem object. The
basis factorization must exist.

The computed column shows how basic variables depends on the speci-
fied non-basic variable xk = (xN )j :

(xB)1 = . . . + ξ1j(xN )j + . . .
(xB)2 = . . . + ξ2j(xN )j + . . .

. . . . . . . . . .
(xB)m = . . . + ξmj(xN )j + . . .

where ξ1j , ξ2j , . . . , ξmj are elements of the simplex table column, (xB)1,
(xB)2, . . . , (xB)m are basic (auxiliary and structural) variables.

The routine stores row indices and corresponding numeric values of non-
zero elements of the computed column in unordered sparse format in loca-
tions ind[1], . . . , ind[len] and val[1], . . . , val[len], respectively, where
0 ≤ len ≤ m is the number of non-zero elements in the column returned on
exit.

Element indices stored in the array ind have the same sense as index
k, i.e. indices 1 to m denote auxiliary variables while indices m + 1 to
m + n denote structural variables (all these variables are obviously basic by
definition).

Returns

The routine glp_eval_tab_col returns len, which is the number of non-
zero elements in the simplex table column stored in the arrays ind and val.
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Comments

A column of the simplex table is computed as follows. At first, the routine
checks that the specified variable xk is non-basic and uses the permutation
matrix Π (3.7) to determine index j of non-basic variable (xN )j , which
corresponds to xk.

The column to be computed is j-th column of the matrix Ξ (3.12), there-
fore:

Ξj = Ξej = −B−1Nej = −B−1Nj ,

where ej is j-th unity vector, Nj is j-th column of matrix N (3.9). So
the routine performs FTRAN to transform Nj to the simplex table column
Ξj = (ξij) and uses the permutation matrix Π to convert row indices i to
original ordinal numbers of auxiliary and structural variables.

4.1.15 lpx transform row—transform explicitly specified
row

Synopsis

int lpx_transform_row(glp_prob *lp, int len, int ind[],
double val[]);

Description

The routine lpx_transform_row performs the same operation as the routine
lpx_eval_tab_row, except that the transformed row is specified explicitly.

The explicitly specified row may be thought as a linear form:

x = a1xm+1 + a2xm+2 + . . . + anxm+n, (1)

where x is an auxiliary variable for this row, aj are coefficients of the linear
form, xm+j are structural variables.

On entry column indices and numerical values of non-zero coefficients aj

of the transformed row should be placed in locations ind[1], . . . , ind[len]
and val[1], . . . , val[len], where len is number of non-zero coefficients.

This routine uses the system of equality constraints and the current basis
in order to express the auxiliary variable x in (1) through the current non-
basic variables (as if the transformed row were added to the problem object
and the auxiliary variable x were basic), i.e. the resultant row has the form:

x = α1(xN )1 + α2(xN )2 + . . . + αn(xN )n, (2)
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where αj are influence coefficients, (xN )j are non-basic (auxiliary and struc-
tural) variables, n is number of columns in the specified problem object.

On exit the routine stores indices and numerical values of non-zero co-
efficients αj of the resultant row (2) in locations ind[1], . . . , ind[len’]
and val[1], . . . , val[len’], where 0 ≤ len′ ≤ n is the number of non-zero
coefficients in the resultant row returned by the routine. Note that indices
of non-basic variables stored in the array ind correspond to original ordinal
numbers of variables: indices 1 to m mean auxiliary variables and indices
m + 1 to m + n mean structural ones.

Returns

The routine lpx_transform_row returns len’, the number of non-zero co-
efficients in the resultant row stored in the arrays ind and val.

4.1.16 lpx transform col—transform explicitly specified
column

Synopsis

int lpx_transform_col(glp_prob *lp, int len, int ind[],
double val[]);

Description

The routine lpx_transform_col performs the same operation as the rou-
tine lpx_eval_tab_col, except that the transformed column is specified
explicitly.

The explicitly specified column may be thought as it were added to the
original system of equality constraints:

x1 = a11xm+1 + . . . + a1nxm+n + a1x
x2 = a21xm+1 + . . . + a2nxm+n + a2x

. . . . . . . . .
xm = am1xm+1 + . . . + amnxm+n + amx

(1)

where xi are auxiliary variables, xm+j are structural variables (presented
in the problem object), x is a structural variable for the explicitly specified
column, ai are constraint coefficients for x.

On entry row indices and numerical values of non-zero coefficients ai of
the transformed column should be placed in locations ind[1], . . . , ind[len]
and val[1], . . . , val[len], where len is number of non-zero coefficients.
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This routine uses the system of equality constraints and the current basis
in order to express the current basic variables through the structural variable
x in (1) (as if the transformed column were added to the problem object
and the variable x were non-basic):

(xB)1 = . . . + α1x
(xB)2 = . . . + α2x

. . . . . . . . .
(xB)m = . . . + αmx

(2)

where αi are influence coefficients, xB are basic (auxiliary and structural)
variables, m is number of rows in the specified problem object.

On exit the routine stores indices and numerical values of non-zero coef-
ficients αi of the resultant column (2) in locations ind[1], . . . , ind[len’]
and val[1], . . . , val[len’], where 0 ≤ len′ ≤ m is the number of non-zero
coefficients in the resultant column returned by the routine. Note that in-
dices of basic variables stored in the array ind correspond to original ordinal
numbers of variables, i.e. indices 1 to m mean auxiliary variables, indices
m + 1 to m + n mean structural ones.

Returns

The routine lpx_transform_col returns len’, the number of non-zero co-
efficients in the resultant column stored in the arrays ind and val.

4.1.17 lpx prim ratio test—perform primal ratio test

Synopsis

int lpx_prim_ratio_test(glp_prob *lp, int len, int ind[],
double val[], int how, double tol);

Description

The routine lpx_prim_ratio_test performs the primal ratio test for an
explicitly specified column of the simplex table.

The primal basic solution associated with an LP problem object, which
the parameter lp points to, should be feasible. No components of the LP
problem object are changed by the routine.

The explicitly specified column of the simplex table shows how the basic
variables xB depend on some non-basic variable y (which is not necessarily
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presented in the problem object):

(xB)1 = . . . + α1y
(xB)2 = . . . + α2y

. . . . . . . . .
(xB)m = . . . + αmy

(1)

The column (1) is specifed on entry to the routine using the sparse for-
mat. Ordinal numbers of basic variables (xB)i should be placed in locations
ind[1], . . . , ind[len], where ordinal number 1 to m denote auxiliary vari-
ables, and ordinal numbers m+1 to m+n denote structural variables. The
corresponding non-zero coefficients αi should be placed in locations val[1],
. . . , val[len]. The arrays ind and val are not changed by the routine.

The parameter how specifies in which direction the variable y changes on
entering the basis: +1 means increasing, −1 means decreasing.

The parameter tol is a relative tolerance (small positive number) used
by the routine to skip small αi in the column (1).

The routine determines the ordinal number of a basic variable (among
specified in ind[1], . . . , ind[len]), which reaches its (lower or upper)
bound first before any other basic variables do and which therefore should
leave the basis instead the variable y in order to keep primal feasibility, and
returns it on exit. If the choice cannot be made (i.e. if the adjacent basic
solution is primal unbounded due to y), the routine returns zero.

Note

If the non-basic variable y is presented in the LP problem object, the column
(1) can be computed using the routine lpx_eval_tab_col. Otherwise it can
be computed using the routine lpx_transform_col.

Returns

The routine lpx_prim_ratio_test returns the ordinal number of some basic
variable (xB)i, which should leave the basis instead the variable y in order
to keep primal feasibility. If the adjacent basic solution is primal unbounded
and therefore the choice cannot be made, the routine returns zero.

115



4.1.18 lpx dual ratio test—perform dual ratio test

Synopsis

int lpx_dual_ratio_test(glp_prob *lp, int len, int ind[],
double val[], int how, double tol);

Description

The routine lpx_dual_ratio_test performs the dual ratio test for an ex-
plicitly specified row of the simplex table.

The dual basic solution associated with an LP problem object, which
the parameter lp points to, should be feasible. No components of the LP
problem object are changed by the routine.

The explicitly specified row of the simplex table is a linear form, which
shows how some basic variable y (not necessarily presented in the problem
object) depends on non-basic variables xN :

y = α1(xN )1 + α2(xN )2 + . . . + αn(xN )n. (1)

The linear form (1) is specified on entry to the routine using the sparse
format. Ordinal numbers of non-basic variables (xN )j should be placed
in locations ind[1], . . . , ind[len], where ordinal numbers 1 to m denote
auxiliary variables, and ordinal numbers m + 1 to m + n denote structural
variables. The corresponding non-zero coefficients αj should be placed in
locations val[1], . . . , val[len]. The arrays ind and val are not changed
by the routine.

The parameter how specifies in which direction the variable y changes on
leaving the basis: +1 means increasing, −1 means decreasing.

The parameter tol is a relative tolerance (small positive number) used
by the routine to skip small αj in the form (1).

The routine determines the ordinal number of some non-basic variable
(among specified in ind[1], . . . , ind[len]), whose reduced cost reaches its
(zero) bound first before this happens for any other non-basic variables and
which therefore should enter the basis instead the variable y in order to keep
dual feasibility, and returns it on exit. If the choice cannot be made (i.e. if
the adjacent basic solution is dual unbounded due to y), the routine returns
zero.

Note

If the basic variable y is presented in the LP problem object, the row (1)
can be computed using the routine lpx_eval_tab_row. Otherwise it can be
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computed using the routine lpx_transform_row.

Returns

The routine lpx_dual_ratio_test returns the ordinal number of some non-
basic variable (xN )j , which should enter the basis instead the variable y in
order to keep dual feasibility. If the adjacent basic solution is dual un-
bounded and therefore the choice cannot be made, the routine returns zero.
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4.2 Library environment routines

4.2.1 glp long—64-bit integer data type

Some GLPK API routines use 64-bit integer data type, which is declared in
the header glpk.h as follows:

typedef struct { int lo, hi; } glp_long;

where lo contains low 32 bits, and hi contains high 32 bits of 64-bit integer
value.13

4.2.2 glp version—determine library version

Synopsis

const char *glp_version(void);

Returns

The routine glp_version returns a pointer to a null-terminated character
string, which specifies the version of the GLPK library in the form "X.Y",
where ‘X’ is the major version number, and ‘Y’ is the minor version number,
for example, "4.16".

Example

printf("GLPK version is %s\n", glp_version());

4.2.3 glp term out—enable/disable terminal output

Synopsis

void glp_term_out(int flag);

Description

Depending on the parameter flag the routine glp_term_out enables or dis-
ables terminal output performed by glpk routines:

GLP_ON —enable terminal output;
GLP_OFF—disable terminal output.

13GLPK conforms to ILP32, LLP64, and LP64 programming models, where the built-in
type int corresponds to 32-bit integers.
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4.2.4 glp term hook—intercept terminal output

Synopsis

void glp_term_hook(int (*func)(void *info, const char *s),
void *info);

Description

The routine glp_term_hook installs the user-defined hook routine to inter-
cept all terminal output performed by GLPK routines.

The parameter func specifies the user-defined hook routine. It is called
from an internal printing routine, which passes to it two parameters: info
and s. The parameter info is a transit pointer specified in corresponding
call to the routine glp_term_hook; it may be used to pass some additional
information to the hook routine. The parameter s is a pointer to the null
terminated character string, which is intended to be written to the terminal.
If the hook routine returns zero, the printing routine writes the string s to
the terminal in a usual way; otherwise, if the hook routine returns non-zero,
no terminal output is performed.

To uninstall the hook routine both parameters func and info should be
specified as NULL.

Example

static int hook(void *info, const char *s)
{ FILE *foo = info;

fputs(s, foo);
return 1;

}

int main(void)
{ FILE *foo;

. . .
/* redirect terminal output */
glp_term_hook(hook, foo);
. . .
/* resume terminal output */
glp_term_hook(NULL, NULL);
. . .

}
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4.2.5 glp mem usage—get memory usage information

Synopsis

void glp_mem_usage(int *count, int *cpeak, glp_long *total,
glp_long *tpeak);

Description

The routine glp_mem_usage reports some information about utilization of
the memory by GLPK routines. Information is stored to locations specified
by corresponding parameters (see below). Any parameter can be specified
as NULL, in which case corresponding information is not stored.

*count is the number of currently allocated memory blocks.
*cpeak is the peak value of *count reached since the initialization of the

GLPK library environment.
*total is the total amount, in bytes, of currently allocated memory

blocks.
*tpeak is the peak value of *total reached since the initialization of the

GLPK library envirionment.

Example

glp_mem_usage(&count, NULL, NULL, NULL);
printf("%d memory block(s) are still allocated\n", count);

4.2.6 glp mem limit—set memory usage limit

Synopsis

void glp_mem_limit(int limit);

Description

The routine glp_mem_limit limits the amount of memory available for dy-
namic allocation (in GLPK routines) to limit megabytes.
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4.2.7 glp free env—free GLPK library environment

Synopsis

void glp_free_env(void);

Description

The routine glp_free_env frees all resources used by GLPK routines (mem-
ory blocks, etc.) which are currently still in use.

Usage notes

Normally the application program does not need to call this routine, because
GLPK routines always free all unused resources. However, if the application
program even has deleted all problem objects, there will be several memory
blocks still allocated for the internal library needs. For some reasons the
application program may want GLPK to free this memory, in which case it
should call glp_free_env.

Note that a call to glp_free_env invalidates all problem objects which
still exist.

121



Chapter 5

Branch-and-Cut API
Routines

5.1 Introduction

5.1.1 Using the callback routine

The GLPK MIP solver based on the branch-and-cut method allows the
application program to control the solution process. This is attained by
means of the user-defined callback routine, which is called by the solver at
various points of the branch-and-cut algorithm.

The callback routine passed to the MIP solver should be written by the
user and has the following specification:1

void foo_bar(glp_tree *tree, void *info);

where tree is a pointer to the data structure glp_tree, which should be
used on subsequent calls to branch-and-cut interface routines, and info is
a transit pointer passed to the routine glp_intopt, which may be used by
the application program to pass some external data to the callback routine.

The callback routine is passed to the MIP solver through the control pa-
rameter structure glp_iocp (see Chapter “Basic API Routines”, Section
“Mixed integer programming routines”, Subsection “Solve MIP problem
with the branch-and-cut method”) as follows:

1The name foo bar used here is a placeholder for the callback routine name.
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glp_prob *mip;
glp_iocp parm;
. . .
glp_init_iocp(&parm);
. . .
parm.cb_func = foo_bar;
parm.cb_info = ... ;
ret = glp_intopt(mip, &parm);
. . .

To determine why it is being called by the MIP solver the callback routine
should use the routine glp_ios_reason (described in this section below),
which returns a code indicating the reason for calling. Depending on the
reason the callback routine may perform necessary actions to control the
solution process.

The reason codes, which correspond to various point of the branch-and-
cut algorithm implemented in the MIP solver, are described in Subsection
“Reasons for calling the callback routine” below.

To ignore calls for reasons, which are not processed by the callback rou-
tine, it should just return to the MIP solver doing nothing. For example:

void foo_bar(glp_tree *tree, void *info)
{ . . .

switch (glp_ios_reason(tree))
{ case GLP_IBRANCH:

. . .
break;

case GLP_ISELECT:
. . .
break;

default:
/* ignore call for other reasons */
break;

}
return;

}

To control the solution process as well as to obtain necessary information
the callback routine may use the branch-and-cut API routines described in
this chapter. Names of all these routines begin with ‘glp_ios_’.
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5.1.2 Branch-and-cut algorithm

This section gives a schematic description of the branch-and-cut algorithm
as it is implemented in the GLPK MIP solver.

1. Initialization
Set L := {P0}, where L is the active list (i.e. the list of active subprob-

lems), P0 is the original MIP problem to be solved.
Set z := +∞ (in case of minimization) or z := −∞ (in case of maxi-

mization), where z is incumbent value, i.e. an upper (minimization) or lower
(maximization) global bound for z∗, the optimal objective value for P 0.

2. Subproblem selection
If L = ∅ then GO TO 9.
Select P ∈ L, i.e. make active subproblem P current.

3. Solving LP relaxation
Solve PLP , which is LP relaxation of P .
If PLP has no primal feasible solution then GO TO 8.
Let z∗LP be the optimal objective value for PLP .
If z∗LP ≥ z (in case of minimization) or z∗LP ≤ z (in case of maximization)

then GO TO 8.

4. Adding “lazy” constraints
Let x∗LP be the optimal solution to PLP .
If there are “lazy” constraints (i.e. essential constraints not included in

the original MIP problem P0), which are violated at the optimal point x∗LP ,
add them to P , and GO TO 3.

5. Check for integrality
Let xj be a variable, which is required to be integer, and let x∗j ∈ x∗LP

be its value in the optimal solution to PLP .
If x∗j is integral for all integer variables, then a better integer feasible

solution is found. Store its components, set z := z∗LP , and GO TO 8.

6. Adding cutting planes
If there are cutting planes (i.e. valid constraints for P ), which are vio-

lated at the optimal point x∗LP , add them to P , and GO TO 3.

7. Branching
Select branching variable xj , i.e. a variable, which is required to be

integer, and whose value x∗j ∈ x∗LP is fractional in the optimal solution to
PLP .
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Create new subproblem PD (so called down branch), which is identical
to the current subproblem P with exception that the upper bound of xj is
replaced by bx∗jc. (For example, if x∗j = 3.14, the new upper bound of xj in
the down branch will be b3.14c = 3.)

Create new subproblem PU (so called up branch), which is identical to
the current subproblem P with exception that the lower bound of xj is
replaced by dx∗je. (For example, if x∗j = 3.14, the new lower bound of xj in
the up branch will be d3.14e = 4.)

Set L := L\{P}∪{PD, PU}, i.e. remove the current subproblem P from
the active list and add two new subproblems PD and PU to the active list.
Then GO TO 2.

8. Pruning
Remove from the active list L all subproblems (including the current

one), whose local bound z̃ is not better than the global bound z, i.e. set
L := L\{P} for all P , where z̃ ≥ z (in case of minimization) or z̃ ≤ z (in
case of maximization), and then GO TO 2.

The local bound z̃ for subproblem P is an lower (minimization) or upper
(maximization) bound for integer optimal solution to this subproblem (not to
the original problem). This bound is local in the sense that only subproblems
in the subtree rooted at node P cannot have better integer feasible solutions.
Note that the local bound is not necessarily the optimal objective value to
LP relaxation PLP .

9. Termination
If z = +∞ (in case of minimization) or z = −∞ (in case of maximiza-

tion), the original problem P0 has no integer feasible solution. Otherwise,
the last integer feasible solution stored on step 5 is the integer optimal so-
lution to the original problem P0. STOP.

5.1.3 The search tree

On the branching step of the branch-and-cut algorithm the current subprob-
lem is divided into two2 new subproblems, so the set of all subproblems can
be represented in the form of a rooted tree, which is called the search or
branch-and-bound tree. An example of the search tree is shown on Fig. 1.
Each node of the search tree corresponds to a subproblem, so the terms
‘node’ and ‘subproblem’ may be used synonymously.

2In more general cases the current subproblem may be divided into more than two
subproblems. However, currently such feature is not used in GLPK.
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Fig. 1. An example of the search tree

In GLPK each node may have one of the following four statuses:
• current node is the active node currently being processed;
• active node is a leaf node, which still has to be processed;
• non-active node is a node, which has been processed, but not fathomed;
• fathomed node is a node, which has been processed and fathomed.
In the data structure representing the search tree GLPK keeps only

current, active, and non-active nodes. Once a node has been fathomed, it is
removed from the tree data structure.

Being created each node of the search tree is assigned a distinct positive
integer called the subproblem reference number, which may be used by the
application program to specify a particular node of the tree. The root node
corresponding to the original problem to be solved is always assigned the
reference number 1.
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5.1.4 Current subproblem

The current subproblem is a MIP problem corresponding to the current node
of the search tree. It is represented as the GLPK problem object (glp_prob)
that allows the application program using API routines to access its content
in the standard way. If the MIP presolver is not used, it is the original
problem object passed to the routine glp_intopt; otherwise, it is an internal
problem object built by the MIP presolver.

Note that the problem object is used by the MIP solver itself during the
solution process for various purposes (to solve LP relaxations, to perfom
branching, etc.), and even if the MIP presolver is not used, the current
content of the problem object may differ from its original content. For
example, it may have additional rows, bounds of some rows and columns
may be changed, etc. In particular, LP segment of the problem object
corresponds to LP relaxation of the current subproblem. However, on exit
from the MIP solver the content of the problem object is restored to its
original state.

To obtain information from the problem object the application program
may use any API routines, which do not change the object. Using API
routines, which change the problem object, is restricted to stipulated cases.

5.1.5 The cut pool

The cut pool is a set of cutting plane constraints maintained by the MIP
solver. It is used by the GLPK cut generation routines and may be used by
the application program in the same way, i.e. rather than to add cutting
plane constraints directly to the problem object the application program
may store them to the cut pool. In the latter case the solver looks through
the cut pool, selects efficient constraints, and adds them to the problem
object.

5.1.6 Reasons for calling the callback routine

The callback routine may be called by the MIP solver for the following
reasons.

Request for subproblem selection

The callback routine is called with the reason code GLP_ISELECT if the cur-
rent subproblem has been fathomed and therefore there is no current sub-
problem.
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In response the callback routine may select some subproblem from the
active list and pass its reference number to the solver using the routine
glp_ios_select_node, in which case the solver continues the search from
the specified active subproblem. If no selection is made by the callback
routine, the solver uses a backtracking technique specified by the control
parameter bt_tech.

To explore the active list (i.e. active nodes of the branch-and-bound
tree) the callback routine may use the routines glp_ios_next_node and
glp_ios_prev_node.

Request for preprocessing

The callback routine is called with the reason code GLP_IPREPRO if the cur-
rent subproblem has just been selected from the active list and its LP re-
laxation is not solved yet.

In response the callback routine may perform some preprocessing of the
current subproblem like tightening bounds of some variables or removing
bounds of some redundant constraints.

Request for row generation

The callback routine is called with the reason code GLP_IROWGEN if LP re-
laxation of the current subproblem has just been solved to optimality and
its objective value is better than the best known integer feasible solution.

In response the callback routine may add one or more “lazy” constraints
(rows), which are violated by the current optimal solution of LP relaxation,
using API routines glp_add_rows, glp_set_row_name, glp_set_row_bnds,
and glp_set_mat_row, in which case the solver will perform re-optimization
of LP relaxation. If there are no violated constraints, the callback routine
should just return.

Optimal solution components for LP relaxation can be obtained with
API routines glp_get_obj_val, glp_get_row_prim, glp_get_row_dual,
glp_get_col_prim, and glp_get_col_dual.

Request for heuristic solution

The callback routine is called with the reason code GLP_IHEUR if LP relax-
ation of the current subproblem being solved to optimality is integer infea-
sible (i.e. values of some structural variables of integer kind are fractional),
though its objective value is better than the best known integer feasible
solution.
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In response the callback routine may try applying a primal heuristic to
find an integer feasible solution,3 which is better than the best known one.
In case of success the callback routine may store such better solution in the
problem object using the routine glp_ios_heur_sol.

Request for cut generation

The callback routine is called with the reason code GLP_ICUTGEN if LP re-
laxation of the current subproblem being solved to optimality is integer
infeasible (i.e. values of some structural variables of integer kind are frac-
tional), though its objective value is better than the best known integer
feasible solution.

In response the callback routine may reformulate the current subproblem
(before it will be splitted up due to branching) by adding to the problem
object one or more cutting plane constraints, which cut off the fractional
optimal point from the MIP polytope.4

Adding cutting plane constraints may be performed in two ways. One
way is the same as for the reason code GLP_IROWGEN (see above), in which
case the callback routine adds new rows corresponding to cutting plane
constraints directly to the current subproblem.

The other way is to add cutting plane constraints to the cut pool, a set of
cutting plane constraints maintained by the solver, rather than directly to
the current subproblem. In this case after return from the callback routine
the solver looks through the cut pool, selects efficient cutting plane con-
straints, adds them to the current subproblem, drops other constraints, and
then performs re-optimization.

Request for branching

The callback routine is called with the reason code GLP_IBRANCH if LP re-
laxation of the current subproblem being solved to optimality is integer
infeasible (i.e. values of some structural variables of integer kind are frac-
tional), though its objective value is better than the best known integer
feasible solution.

In response the callback routine may choose some variable suitable for
branching (i.e. integer variable, whose value in optimal solution to LP relax-
ation of the current subproblem is fractional) and pass its ordinal number

3Integer feasible to the original MIP problem, not to the current subproblem.
4Since these constraints are added to the current subproblem, they may be globally as

well as locally valid.
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to the solver using the routine glp_ios_branch_upon, in which case the
solver splits the current subproblem in two new subproblems and continues
the search. If no choice is made by the callback routine, the solver uses a
branching technique specified by the control parameter br_tech.

Better integer solution found

The callback routine is called with the reason code GLP_IBINGO if LP relax-
ation of the current subproblem being solved to optimality is integer feasible
(i.e. values of all structural variables of integer kind are integral within the
working precision) and its objective value is better than the best known
integer feasible solution.

Optimal solution components for LP relaxation can be obtained in the
same way as for the reason code GLP_IROWGEN (see above).

Components of the new MIP solution can be obtained with API routines
glp_mip_obj_val, glp_mip_row_val, and glp_mip_col_val. Note, how-
ever, that due to row/cut generation there may be additional rows in the
problem object.

The difference between optimal solution to LP relaxation and corre-
sponding MIP solution is that in the former case some structural variables
of integer kind (namely, basic variables) may have values, which are close
to nearest integers within the working precision, while in the latter case all
such variables have exact integral values.

The reason GLP_IBINGO is intended only for informational purposes, so
the callback routine should not modify the problem object in this case.
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5.2 Basic routines

5.2.1 glp ios reason—determine reason for calling the call-
back routine

Synopsis

int glp_ios_reason(glp_tree *tree);

Returns

The routine glp_ios_reason returns a code, which indicates why the user-
defined callback routine is being called:

GLP_ISELECT—request for subproblem selection;
GLP_IPREPRO—request for preprocessing;
GLP_IROWGEN—request for row generation;
GLP_IHEUR —request for heuristic solution;
GLP_ICUTGEN—request for cut generation;
GLP_IBRANCH—request for branching;
GLP_IBINGO —better integer solution found.

5.2.2 glp ios get prob—access the problem object

Synopsis

glp_prob *glp_ios_get_prob(glp_tree *tree);

Description

The routine glp_ios_get_prob can be called from the user-defined callback
routine to access the problem object, which is used by the MIP solver. It
is the original problem object passed to the routine glp_intopt if the MIP
presolver is not used; otherwise it is an internal problem object built by the
presolver.

Returns

The routine glp_ios_get_prob returns a pointer to the problem object used
by the MIP solver.
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Comments

To obtain various information about the problem instance the callback rou-
tine can access the problem object (i.e. the object of type glp_prob) using
the routine glp_ios_get_prob. It is the original problem object passed to
the routine glp_intopt if the MIP presolver is not used; otherwise it is an
internal problem object built by the presolver.

5.2.3 glp ios row attr—determine additional row attributes

Synopsis

void glp_ios_row_attr(glp_tree *tree, int i, glp_attr *attr);

Description

The routine glp_ios_row_attr retrieves additional attributes of i-th row of
the current subproblem and stores them in the structure glp_attr, which
the parameter attr points to.

The structure glp_attr has the following fields:

int level
Subproblem level at which the row was created. (If level = 0, the
row was added either to the original problem object passed to the rou-
tine glp_intopt or to the root subproblem on generating “lazy” or/and
cutting plane constraints.)

int origin
The row origin flag:
GLP_RF_REG —regular constraint;
GLP_RF_LAZY—“lazy” constraint;
GLP_RF_CUT —cutting plane constraint.

int klass
The row class descriptor, which is a number passed to the routine
glp_ios_add_row as its third parameter. If the row is a cutting plane
constraint generated by the solver, its class may be the following:
GLP_RF_GMI —Gomory’s mixed integer cut;
GLP_RF_MIR —mixed integer rounding cut;
GLP_RF_COV —mixed cover cut;
GLP_RF_CLQ —clique cut.
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5.2.4 glp ios mip gap—compute relative MIP gap

Synopsis

double glp_ios_mip_gap(glp_tree *tree);

Description

The routine glp_ios_mip_gap computes the relative MIP gap (also called
duality gap) with the following formula:

gap =
|best mip− best bnd|

|best mip|+ DBL EPSILON

where best_mip is the best integer feasible solution found so far, best_bnd
is the best (global) bound. If no integer feasible solution has been found
yet, gap is set to DBL_MAX.

Returns

The routine glp_ios_mip_gap returns the relative MIP gap.

Comments

The relative MIP gap is used to measure the quality of the best integer
feasible solution found so far, because the optimal solution value z∗ for the
original MIP problem always lies in the range

best bnd ≤ z∗ ≤ best mip

in case of minimization, or in the range

best mip ≤ z∗ ≤ best bnd

in case of maximization.
To express the relative MIP gap in percents the value returned by the

routine glp_ios_mip_gap should be multiplied by 100%.
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5.2.5 glp ios node data—access application-specific data

Synopsis

void *glp_ios_node_data(glp_tree *tree, int p);

Description

The routine glp_ios_node_data allows the application accessing a memory
block allocated for the subproblem (which may be active or inactive), whose
reference number is p.

The size of the block is defined by the control parameter cb_size passed
to the routine glp_intopt. The block is initialized by binary zeros on creat-
ing corresponding subproblem, and its contents is kept until the subproblem
will be removed from the tree.

The application may use these memory blocks to store specific data for
each subproblem.

Returns

The routine glp_ios_node_data returns a pointer to the memory block for
the specified subproblem. Note that if cb_size = 0, the routine returns a
null pointer.

5.2.6 glp ios select node—select subproblem to continue the
search

Synopsis

void glp_ios_select_node(glp_tree *tree, int p);

Description

The routine glp_ios_select_node can be called from the user-defined call-
back routine in response to the reason GLP_ISELECT to select an active sub-
problem, whose reference number is p. The search will be continued from
the subproblem selected.
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5.2.7 glp ios heur sol—provide solution found by heuristic

Synopsis

int glp_ios_heur_sol(glp_tree *tree, const double x[]);

Description

The routine glp_ios_heur_sol can be called from the user-defined callback
routine in response to the reason GLP_IHEUR to provide an integer feasible
solution found by a primal heuristic.

Primal values of all variables (columns) found by the heuristic should be
placed in locations x[1], . . . , x[n], where n is the number of columns in the
original problem object. Note that the routine glp_ios_heur_sol does not
check primal feasibility of the solution provided.

Using the solution passed in the array x the routine computes value of
the objective function. If the objective value is better than the best known
integer feasible solution, the routine computes values of auxiliary variables
(rows) and stores all solution components in the problem object.

Returns

If the provided solution is accepted, the routine glp_ios_heur_sol returns
zero. Otherwise, if the provided solution is rejected, the routine returns
non-zero.

5.2.8 glp ios can branch—check if can branch upon specified
variable

Synopsis

int glp_ios_can_branch(glp_tree *tree, int j);

Returns

If j-th variable (column) can be used to branch upon, the routine returns
non-zero, otherwise zero.
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5.2.9 glp ios branch upon—choose variable to branch upon

Synopsis

void glp_ios_branch_upon(glp_tree *tree, int j, int sel);

Description

The routine glp_ios_branch_upon can be called from the user-defined call-
back routine in response to the reason GLP_IBRANCH to choose a branching
variable, whose ordinal number is j. Should note that only variables, for
which the routine glp_ios_can_branch returns non-zero, can be used to
branch upon.

The parameter sel is a flag that indicates which branch (subproblem)
should be selected next to continue the search:

GLP_DN_BRNCH—select down-branch;
GLP_UP_BRNCH—select up-branch;
GLP_NO_BRNCH—use general selection technique.

Comments

On branching the solver removes the current active subproblem from the
active list and creates two new subproblems (down- and up-branches), which
are added to the end of the active list. Note that the down-branch is created
before the up-branch, so the last active subproblem will be the up-branch.

The down- and up-branches are identical to the current subproblem with
exception that in the down-branch the upper bound of xj , the variable
chosen to branch upon, is replaced by bx∗jc, while in the up-branch the
lower bound of xj is replaced by dx∗je, where x∗j is the value of xj in optimal
solution to LP relaxation of the current subproblem. For example, if x∗j =
3.14, the new upper bound of xj in the down-branch is b3.14c = 3, and the
new lower bound in the up-branch is d3.14e = 4.)

Additionally the callback routine may select either down- or up-branch,
from which the solver will continue the search. If none of the branches is
selected, a general selection technique will be used.
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5.2.10 glp ios terminate—terminate the solution process

Synopsis

void glp_ios_terminate(glp_tree *tree);

Description

The routine glp_ios_terminate sets a flag indicating that the MIP solver
should prematurely terminate the search.
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5.3 The search tree exploring routines

5.3.1 glp ios tree size—determine size of the search tree

Synopsis

void glp_ios_tree_size(glp_tree *tree, int *a_cnt, int *n_cnt,
int *t_cnt);

Description

The routine glp_ios_tree_size stores the following three counts which
characterize the current size of the search tree:

a_cnt is the current number of active nodes, i.e. the current size of the
active list;

n_cnt is the current number of all (active and inactive) nodes;
t_cnt is the total number of nodes including those which have been

already removed from the tree. This count is increased whenever a new
node appears in the tree and never decreased.

If some of the parameters a_cnt, n_cnt, t_cnt is a null pointer, the
corresponding count is not stored.

5.3.2 glp ios curr node—determine current active subprob-
lem

Synopsis

int glp_ios_curr_node(glp_tree *tree);

Returns

The routine glp_ios_curr_node returns the reference number of the current
active subproblem. However, if the current subproblem does not exist, the
routine returns zero.
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5.3.3 glp ios next node—determine next active subproblem

Synopsis

int glp_ios_next_node(glp_tree *tree, int p);

Returns

If the parameter p is zero, the routine glp_ios_next_node returns the ref-
erence number of the first active subproblem. However, if the tree is empty,
zero is returned.

If the parameter p is not zero, it must specify the reference number of
some active subproblem, in which case the routine returns the reference
number of the next active subproblem. However, if there is no next active
subproblem in the list, zero is returned.

All subproblems in the active list are ordered chronologically, i.e. sub-
problem A precedes subproblem B if A was created before B.

5.3.4 glp ios prev node—determine previous active subprob-
lem

Synopsis

int glp_ios_prev_node(glp_tree *tree, int p);

Returns

If the parameter p is zero, the routine glp_ios_prev_node returns the ref-
erence number of the last active subproblem. However, if the tree is empty,
zero is returned.

If the parameter p is not zero, it must specify the reference number of
some active subproblem, in which case the routine returns the reference
number of the previous active subproblem. However, if there is no previous
active subproblem in the list, zero is returned.

All subproblems in the active list are ordered chronologically, i.e. sub-
problem A precedes subproblem B if A was created before B.
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5.3.5 glp ios up node—determine parent subproblem

Synopsis

int glp_ios_up_node(glp_tree *tree, int p);

Returns

The parameter p must specify the reference number of some (active or inac-
tive) subproblem, in which case the routine iet_get_up_node returns the
reference number of its parent subproblem. However, if the specified sub-
problem is the root of the tree and, therefore, has no parent, the routine
returns zero.

5.3.6 glp ios node level—determine subproblem level

Synopsis

int glp_ios_node_level(glp_tree *tree, int p);

Returns

The routine glp_ios_node_level returns the level of the subproblem,
whose reference number is p, in the branch-and-bound tree. (The root sub-
problem has level 0, and the level of any other subproblem is the level of its
parent plus one.)

5.3.7 glp ios node bound—determine subproblem local
bound

Synopsis

double glp_ios_node_bound(glp_tree *tree, int p);

Returns

The routine glp_ios_node_bound returns the local bound for (active or
inactive) subproblem, whose reference number is p.

Comments

The local bound for subproblem p is an lower (minimization) or upper (max-
imization) bound for integer optimal solution to this subproblem (not to the

140



original problem). This bound is local in the sense that only subproblems in
the subtree rooted at node p cannot have better integer feasible solutions.

On creating a subproblem (due to the branching step) its local bound
is inherited from its parent and then may get only stronger (never weaker).
For the root subproblem its local bound is initially set to -DBL_MAX (min-
imization) or +DBL_MAX (maximization) and then improved as the root LP
relaxation has been solved.

Note that the local bound is not necessarily the optimal objective value
to corresponding LP relaxation.

5.3.8 glp ios best node—find active subproblem with best
local bound

Synopsis

int glp_ios_best_node(glp_tree *tree);

Returns

The routine glp_ios_best_node returns the reference number of the active
subproblem, whose local bound is best (i.e. smallest in case of minimization
or largest in case of maximization). However, if the tree is empty, the routine
returns zero.

Comments

The best local bound is an lower (minimization) or upper (maximization)
bound for integer optimal solution to the original MIP problem.
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5.4 The cut pool routines

5.4.1 glp ios pool size—determine current size of the cut
pool

Synopsis

int glp_ios_pool_size(glp_tree *tree);

Returns

The routine glp_ios_pool_size returns the current size of the cut pool,
that is, the number of cutting plane constraints currently added to it.

5.4.2 glp ios add row—add constraint to the cut pool

Synopsis

int glp_ios_add_row(glp_tree *tree, const char *name,
int klass, int flags, int len, const int ind[],
const double val[], int type, double rhs);

Description

The routine glp_ios_add_row adds specified row (cutting plane constraint)
to the cut pool.

The cutting plane constraint should have the following format:

∑

j∈J

ajxj

{
≥
≤

}
b,

where J is a set of indices (ordinal numbers) of structural variables, aj are
constraint coefficients, xj are structural variables, b is the right-hand side.

The parameter name specifies a symbolic name assigned to the constraint
(1 up to 255 characters). If it is NULL or an empty string, no name is assigned.

The parameter klass specifies the constraint class, which must be either
zero or a number in the range from 101 to 200. The application may use
this attribute to distinguish between cutting plane constraints of different
classes.5

The parameter flags currently is not used and must be zero.
5Constraint classes numbered from 1 to 100 are reserved for GLPK cutting plane

generators.
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Ordinal numbers of structural variables (i.e. column indices) j ∈ J and
numerical values of corresponding constraint coefficients aj must be placed
in locations ind[1], . . . , ind[len] and val[1], . . . , val[len], respectively,
where len = |J | is the number of constraint coefficients, 0 ≤ len ≤ n, and n
is the number of columns in the problem object. Coefficients with identical
column indices are not allowed. Zero coefficients are allowed, however, they
are ignored.

The parameter type specifies the constraint type as follows:
GLP_LO means inequality constraint Σajxj ≥ b;
GLP_UP means inequality constraint Σajxj ≤ b;
The parameter rhs specifies the right-hand side b.
All cutting plane constraints in the cut pool are identified by their ordinal

numbers 1, 2, . . . , size, where size is the current size of the cut pool.
New constraints are always added to the end of the cut pool, thus, ordinal
numbers of previously added constraints are not changed.

Returns

The routine glp_ios_add_row returns the ordinal number of the cutting
plane constraint added, which is the new size of the cut pool.

Example

/* generate triangle cutting plane:
x[i] + x[j] + x[k] <= 1 */

. . .
/* add the constraint to the cut pool */
ind[1] = i, val[1] = 1.0;
ind[2] = j, val[2] = 1.0;
ind[3] = k, val[3] = 1.0;
glp_ios_add_row(tree, NULL, TRIANGLE_CUT, 0, 3, ind, val,

GLP_UP, 1.0);

Comments

Cutting plane constraints added to the cut pool are intended to be then
added only to the current subproblem, so these constraints can be globally
as well as locally valid. However, adding a constraint to the cut pool does
not mean that it will be added to the current subproblem—it depends on
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the solver’s decision: if the constraint seems to be efficient, it is moved from
the pool to the current subproblem, otherwise it is simply dropped.6

Normally, every time the callback routine is called for cut generation,
the cut pool is empty. On the other hand, the solver itself can generate
cutting plane constraints (like Gomory’s or mixed integer rounding cuts), in
which case the cut pool may be non-empty.

5.4.3 glp ios del row—remove constraint from the cut pool

Synopsis

void glp_ios_del_row(glp_tree *tree, int i);

Description

The routine glp_ios_del_row deletes i-th row (cutting plane constraint)
from the cut pool, where 1 ≤ i ≤ size is the ordinal number of the constraint
in the pool, size is the current size of the cut pool.

Note that deleting a constraint from the cut pool leads to changing
ordinal numbers of other constraints remaining in the pool. New ordinal
numbers of the remaining constraints are assigned under assumption that
the original order of constraints is not changed. Let, for example, there be
four constraints a, b, c and d in the cut pool, which have ordinal numbers
1, 2, 3 and 4, respectively, and let constraint b have been deleted. Then
after deletion the remaining constraint a, c and d are assigned new ordinal
numbers 1, 2 and 3, respectively.

To find the constraint to be deleted the routine glp_ios_del_row uses
“smart” linear search, so it is recommended to remove constraints in a nat-
ural or reverse order and avoid removing them in a random order.

Example

/* keep first 10 constraints in the cut pool and remove other
constraints */

while (glp_ios_pool_size(tree) > 10)
glp_ios_del_row(tree, glp_ios_pool_size(tree));

6Globally valid constraints could be saved and then re-used for other subproblems, but
currently such feature is not implemented.

144



5.4.4 glp ios clear pool—remove all constraints from the cut
pool

Synopsis

void glp_ios_clear_pool(glp_tree *tree);

Description

The routine glp_ios_clear_pool makes the cut pool empty deleting all
existing rows (cutting plane constraints) from it.
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Chapter 6

Graph and Network API
Routines

6.1 Introduction

6.1.1 Graph program object

In GLPK the base program object used to represent graphs and networks is
a directed graph (digraph).

Formally, digraph (or simply, graph) is a pair G = (V, A), where V is a
set of vertices, and A is a set arcs.1 Each arc a ∈ A is an ordered pair of
vertices a = (x, y), where x ∈ V is called tail vertex of arc a, and y ∈ V is
called its head vertex.

Representation of a graph in the program includes three structs defined
by typedef in the header glpk.h:

• glp_graph, which represents the graph in a whole,
• glp_vertex, which represents a vertex of the graph, and
• glp_arc, which represents an arc of the graph.

All these three structs are “semi-opaque”, i.e. the application program
can directly access their fields through pointers, however, changing the fields
directly is not allowed—all changes should be performed only with appro-
priate GLPK API routines.

1A may be a multiset.
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glp graph. The struct glp_graph has the following fields available to the
application program:

char *name;
Symbolic name assigned to the graph. It is a pointer to a null terminated
character string of length from 1 to 255 characters. If no name is assigned
to the graph, this field contains NULL.

int nv;
The number of vertices in the graph, nv ≥ 0.

int na;
The number of arcs in the graph, na ≥ 0.

glp_vertex **v;
Pointer to an array containing the list of vertices. Element v[0] is not
used. Element v[i], 1 ≤ i ≤ nv, is a pointer to i-th vertex of the graph.
Note that on adding new vertices to the graph the field v may be al-
tered due to reallocation. However, pointers v[i] are not changed while
corresponding vertices exist in the graph.

int v_size;
Size of vertex data blocks, in bytes, 0 ≤ v size ≤ 256. (See also the field
data in the struct glp_vertex.)

int a_size;
Size of arc data blocks, in bytes, 0 ≤ v size ≤ 256. (See also the field
data in the struct glp_arc.)

glp vertex. The struct glp_vertex has the following fields available to the
application program:

int i;
Ordinal number of the vertex, 1 ≤ i ≤ nv. Note that element v[i] in the
struct glp_graph points to the vertex, whose ordinal number is i.

char *name;
Symbolic name assigned to the vertex. It is a pointer to a null terminated
character string of length from 1 to 255 characters. If no name is assigned
to the vertex, this field contains NULL.

void *data;
Pointer to a data block associated with the vertex. This data block is
automatically allocated on creating a new vertex and freed on deleting
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the vertex. If v size = 0, the block is not allocated, and this field
contains NULL.

void *temp;
Working pointer, which may be used freely for any purposes. The appli-
cation program can change this field directly.

glp_arc *in;
Pointer to the (unordered) list of incoming arcs. If the vertex has no
incoming arcs, this field contains NULL.

glp_arc *out;
Pointer to the (unordered) list of outgoing arcs. If the vertex has no
outgoing arcs, this field contains NULL.

glp arc. The struct glp_arc has the following fields available to the appli-
cation program:

glp_vertex *tail;
Pointer to a vertex, which is tail endpoint of the arc.

glp_vertex *head;
Pointer to a vertex, which is head endpoint of the arc.

void *data;
Pointer to a data block associated with the arc. This data block is
automatically allocated on creating a new arc and freed on deleting the
arc. If v size = 0, the block is not allocated, and this field contains
NULL.

void *temp;
Working pointer, which may be used freely for any purposes. The appli-
cation program can change this field directly.

glp_arc *t_next;
Pointer to another arc, which has the same tail endpoint as this one.
NULL in this field indicates the end of the list of outgoing arcs.

glp_arc *h_next;
Pointer to another arc, which has the same head endpoint as this one.
NULL in this field indicates the end of the list of incoming arcs.
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6.2 Graph creating and modifying routines

6.2.1 glp create graph—create graph

Synopsis

glp_graph *glp_create_graph(int v_size, int a_size);

Description

The routine glp_create_graph creates a new graph, which initially is
empty, i.e. has no vertices and arcs.

The parameter v_size specifies the size of vertex data blocks, in bytes,
0 ≤ v size ≤ 256.

The parameter a_size specifies the size of arc data blocks, in bytes,
0 ≤ a size ≤ 256.

Returns

The routine returns a pointer to the graph created.

6.2.2 glp set graph name—assign (change) graph name

Synopsis

void glp_set_graph_name(glp_graph *G, const char *name);

Description

The routine glp_set_graph_name assigns a symbolic name specified by the
character string name (1 to 255 chars) to the graph.

If the parameter name is NULL or an empty string, the routine erases the
existing symbolic name of the graph.
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6.2.3 glp add vertices—add new vertices to graph

Synopsis

int glp_add_vertices(glp_graph *G, int nadd);

Description

The routine glp_add_vertices adds nadd vertices to the specified graph.
New vertices are always added to the end of the vertex list, so ordinal num-
bers of existing vertices remain unchanged. Note that this operation may
change the field v in the struct glp_graph (pointer to the vertex array) due
to reallocation.

Being added each new vertex is isolated, i.e. has no incident arcs.
If the size of vertex data blocks specified on creating the graph is non-

zero, the routine also allocates a memory block of that size for each new
vertex added, fills it by binary zeros, and stores a pointer to it in the field
data of the struct glp_vertex. Otherwise, if the block size is zero, the field
data is set to NULL.

Returns

The routine glp_add_vertices returns the ordinal number of the first new
vertex added to the graph.

6.2.4 glp set vertex name—assign (change) vertex name

[This routine is not implemented yet.]

6.2.5 glp add arc—add new arc to graph

Synopsis

glp_arc *glp_add_arc(glp_graph *G, int i, int j);

Description

The routine glp_add_arc adds one new arc to the specified graph.
The parameters i and j specify the ordinal numbers of, resp., tail and

head endpoints (vertices) of the arc. Note that self-loops and multiple arcs
are allowed.

If the size of arc data blocks specified on creating the graph is non-zero,
the routine also allocates a memory block of that size, fills it by binary zeros,
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and stores a pointer to it in the field data of the struct glp_arc. Otherwise,
if the block size is zero, the field data is set to NULL.

6.2.6 glp remove vertices—remove vertices from graph

[This routine is not implemented yet.]

6.2.7 glp remove arc—remove arc from graph

[This routine is not implemented yet.]

6.2.8 glp erase graph—erase graph content

Synopsis

void glp_erase_graph(glp_graph *G, int v_size, int a_size);

Description

The routine glp_erase_graph erases the content of the specified graph.
The effect of this operation is the same as if the graph would be deleted
with the routine glp_delete_graph and then created anew with the routine
glp_create_graph, with exception that the handle (pointer) to the graph
remains valid.

The parameters v_size and a_size have the same meaning as for the
routine glp_create_graph.

6.2.9 glp delete graph—delete graph

Synopsis

void glp_delete_graph(glp_graph *G);

Description

The routine glp_delete_graph deletes the specified graph and frees all the
memory allocated to this program object.
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6.3 Minimum cost flow problem

6.3.1 Background

The minimum cost flow problem (MCFP) is stated as follows. Let there
be given a directed graph (flow network) G = (V, A), where V is a set of
vertices (nodes), and A ⊆ V × V is a set of arcs. Let for each node i ∈ V
there be given a quantity bi having the following meaning:

if bi > 0, then |bi| is a supply at node i, which shows how many flow
units are generated at node i (or, equivalently, entering the network through
node i from the outside);

if bi < 0, then |bi| is a demand at node i, which shows how many flow
units are lost at node i (or, equivalently, leaving the network through node
i to the outside);

if bi = 0, then i is a transshipment node, at which the flow is conserved,
i.e. neither generated nor lost.

Let also for each arc a = (i, j) ∈ A there be given the following three
quantities:

lij , a (non-negative) lower bound to the flow through arc (i, j);
uij , an upper bound to the flow through arc (i, j), which is the arc

capacity;
cij , a per-unit cost of the flow through arc (i, j).
The problem is to find flows xij through every arc of the network, which

satisfy the specified bounds and the conservation constraints at all nodes,
and minimize the total flow cost. Here the conservation constraint at a node
means that the total flow entering this node through its incoming arcs plus
the supply at this node must be equal to the total flow leaving this node
through its outgoing arcs plus the demand at this node.

An example of the minimum cost flow problem is shown on Fig. 1.
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Fig. 1. An example of the minimum cost flow problem.
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The minimum cost flow problem can be naturally formulated as the
following LP problem:

minimize
z =

∑

(i,j)∈A

cijxij (1)

subject to
∑

(i,j)∈A

xij −
∑

(j,i)∈A

xji = bi for all i ∈ V (2)

lij ≤ xij ≤ uij for all (i, j) ∈ A (3)

6.3.2 glp read mincost—read minimum cost flow problem
data in DIMACS format

Synopsis

int glp_read_mincost(glp_graph *G, int v_rhs, int a_low,
int a_cap, int a_cost, const char *fname);

Description

The routine glp_read_mincost reads the minimum cost flow problem data
from a text file in DIMACS format.

The parameter G specifies the graph object, to which the problem data
have to be stored. Note that before reading data the current content of the
graph object is completely erased with the routine glp_erase_graph.

The parameter v_rhs specifies an offset of the field of type double in
the vertex data block, to which the routine stores bi, the supply/demand
value. If v_rhs < 0, the value is not stored.

The parameter a_low specifies an offset of the field of type double in
the arc data block, to which the routine stores lij , the lower bound to the
arc flow. If a_low < 0, the lower bound is not stored.

The parameter a_cap specifies an offset of the field of type double in
the arc data block, to which the routine stores uij , the upper bound to the
arc flow (the arc capacity). If a_cap < 0, the upper bound is not stored.

The parameter a_cost specifies an offset of the field of type double in
the arc data block, to which the routine stores cij , the per-unit cost of the
arc flow. If a_cost < 0, the cost is not stored.

The character string fname specifies the name of a text file to be read
in. (If the file name name ends with the suffix ‘.gz’, the file is assumed to
be compressed, in which case the routine decompresses it “on the fly”.)
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Returns

If the operation was successful, the routine returns zero. Otherwise, it prints
an error message and returns non-zero.

Example

typedef struct
{ /* vertex data block */

...
double rhs;
...

} v_data;

typedef struct
{ /* arc data block */

...
double low, cap, cost;
...

} a_data;

int main(void)
{ glp_graph *G;

int ret;
G = glp_create_graph(sizeof(v_data), sizeof(a_data));
ret = glp_read_mincost(G, offsetof(v_data, rhs),

offsetof(a_data, low), offsetof(a_data, cap),
offsetof(a_data, cost), "sample.min");

if (ret != 0) goto ...
...

}

DIMACS minimum cost flow problem format2

The DIMACS input file is a plain ASCII text file. It contains lines of several
types described below. A line is terminated with an end-of-line character.
Fields in each line are separated by at least one blank space. Each line
begins with a one-character designator to identify the line type.

2This material is based on the paper “The First DIMACS International Algorithm
Implementation Challenge: Problem Definitions and Specifications”, which is publically
available at http://dimacs.rutgers.edu/Challenges/.
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Note that DIMACS requires all numerical quantities to be integers in the
range [−231, 231− 1] while GLPK allows the quantities to be floating-point
numbers.

Comment lines. Comment lines give human-readable information about
the file and are ignored by programs. Comment lines can appear anywhere
in the file. Each comment line begins with a lower-case character c.

c This is a comment line

Problem line. There is one problem line per data file. The problem line
must appear before any node or arc descriptor lines. It has the following
format:

p min NODES ARCS

The lower-case character p signifies that this is a problem line. The three-
character problem designator min identifies the file as containing specifi-
cation information for the minimum cost flow problem. The NODES field
contains an integer value specifying the number of nodes in the network.
The ARCS field contains an integer value specifying the number of arcs in
the network.

Node descriptors. All node descriptor lines must appear before all arc
descriptor lines. The node descriptor lines describe supply and demand
nodes, but not transshipment nodes. That is, only nodes with non-zero
node supply/demand values appear. There is one node descriptor line for
each such node, with the following format:

n ID FLOW

The lower-case character n signifies that this is a node descriptor line. The ID
field gives a node identification number, an integer between 1 and NODES. The
FLOW field gives the amount of supply (if positive) or demand (if negative)
at node ID.

Arc descriptors. There is one arc descriptor line for each arc in the
network. Arc descriptor lines are of the following format:

a SRC DST LOW CAP COST
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The lower-case character a signifies that this is an arc descriptor line. For a
directed arc (i, j) the SRC field gives the identification number i for the tail
endpoint, and the DST field gives the identification number j for the head
endpoint. Identification numbers are integers between 1 and NODES. The
LOW field specifies the minimum amount of flow that can be sent along arc
(i, j), and the CAP field gives the maximum amount of flow that can be sent
along arc (i, j) in a feasible flow. The COST field contains the per-unit cost
of flow sent along arc (i, j).

Example. Below here is an example of the data file in DIMACS format
corresponding to the minimum cost flow problem shown on Fig 1.

c sample.min
c
c This is an example of the minimum cost flow problem data
c in DIMACS format.
c
p min 9 14
c
n 1 20
n 9 -20
c
a 1 2 0 14 0
a 1 4 0 23 0
a 2 3 0 10 2
a 2 4 0 9 3
a 3 5 2 12 1
a 3 8 0 18 0
a 4 5 0 26 0
a 5 2 0 11 1
a 5 6 0 25 5
a 5 7 0 4 7
a 6 7 0 7 0
a 6 8 4 8 0
a 7 9 0 15 3
a 8 9 0 20 9
c
c eof
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6.3.3 glp write mincost—write minimum cost flow problem
data in DIMACS format

Synopsis

int glp_write_mincost(glp_graph *G, int v_rhs, int a_low,
int a_cap, int a_cost, const char *fname);

Description

The routine glp_write_mincost writes the minimum cost flow problem
data to a text file in DIMACS format.

The parameter G is the graph (network) program object, which specifies
the minimum cost flow problem instance.

The parameter v_rhs specifies an offset of the field of type double in
the vertex data block, which contains bi, the supply/demand value. If v_rhs
< 0, it is assumed that bi = 0 for all nodes.

The parameter a_low specifies an offset of the field of type double in
the arc data block, which contains lij , the lower bound to the arc flow. If
a_low < 0, it is assumed that lij = 0 for all arcs.

The parameter a_cap specifies an offset of the field of type double in
the arc data block, which contains uij , the upper bound to the arc flow (the
arc capacity). If the upper bound is specified as DBL_MAX, it is assumed that
uij = ∞, i.e. the arc is uncapacitated. If a_cap < 0, it is assumed that
uij = 1 for all arcs.

The parameter a_cost specifies an offset of the field of type double in
the arc data block, which contains cij , the per-unit cost of the arc flow. If
a_cost < 0, it is assumed that cij = 0 for all arcs.

The character string fname specifies a name of the text file to be writ-
ten out. (If the file name ends with suffix ‘.gz’, the file is assumed to be
compressed, in which case the routine performs automatic compression on
writing it.)

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints
an error message and returns non-zero.
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6.3.4 glp mincost lp—convert minimum cost flow problem
to LP

Synopsis

void glp_mincost_lp(glp_prob *lp, glp_graph *G, int names,
int v_rhs, int a_low, int a_cap, int a_cost);

Description

The routine glp_mincost_lp builds LP problem (1)—(3), which corre-
sponds to the specified minimum cost flow problem.

The parameter lp is the resultant LP problem object to be built. Note
that on entry its current content is erased with the routine glp_erase_prob.

The parameter G is the graph (network) program object, which specifies
the minimum cost flow problem instance.

The parameter names is a flag. If it is GLP_ON, the routine uses symbolic
names of the graph object components to assign symbolic names to the LP
problem object components. If the flag is GLP_OFF, no symbolic names are
assigned.

The parameter v_rhs specifies an offset of the field of type double in
the vertex data block, which contains bi, the supply/demand value. If v_rhs
< 0, it is assumed that bi = 0 for all nodes.

The parameter a_low specifies an offset of the field of type double in
the arc data block, which contains lij , the lower bound to the arc flow. If
a_low < 0, it is assumed that lij = 0 for all arcs.

The parameter a_cap specifies an offset of the field of type double in
the arc data block, which contains uij , the upper bound to the arc flow (the
arc capacity). If the upper bound is specified as DBL_MAX, it is assumed that
uij = ∞, i.e. the arc is uncapacitated. If a_cap < 0, it is assumed that
uij = 1 for all arcs.

The parameter a_cost specifies an offset of the field of type double in
the arc data block, which contains cij , the per-unit cost of the arc flow. If
a_cost < 0, it is assumed that cij = 0 for all arcs.

Example

The example program below reads the minimum cost problem instance in
DIMACS format from file ‘sample.min’, converts the instance to LP, and
then writes the resultant LP in CPLEX format to file ‘mincost.lp’.
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#include <stddef.h>
#include <glpk.h>

typedef struct { double rhs; } v_data;
typedef struct { double low, cap, cost; } a_data;

int main(void)
{ glp_graph *G;

glp_prob *lp;
G = glp_create_graph(sizeof(v_data), sizeof(a_data));
glp_read_mincost(G, offsetof(v_data, rhs),

offsetof(a_data, low), offsetof(a_data, cap),
offsetof(a_data, cost), "sample.min");

lp = glp_create_prob();
glp_mincost_lp(lp, G, GLP_ON, offsetof(v_data, rhs),

offsetof(a_data, low), offsetof(a_data, cap),
offsetof(a_data, cost));

glp_delete_graph(G);
glp_write_lp(lp, NULL, "mincost.lp");
glp_delete_prob(lp);
return 0;

}

If ‘sample.min’ is the example data file from the subsection describing
the routine glp_read_mincost, file ‘mincost.lp’ may look like follows:

Minimize
obj: + 3 x(2,4) + 2 x(2,3) + x(3,5) + 7 x(5,7) + 5 x(5,6)
+ x(5,2) + 3 x(7,9) + 9 x(8,9)

Subject To
r_1: + x(1,2) + x(1,4) = 20
r_2: - x(5,2) + x(2,3) + x(2,4) - x(1,2) = 0
r_3: + x(3,5) + x(3,8) - x(2,3) = 0
r_4: + x(4,5) - x(2,4) - x(1,4) = 0
r_5: + x(5,2) + x(5,6) + x(5,7) - x(4,5) - x(3,5) = 0
r_6: + x(6,7) + x(6,8) - x(5,6) = 0
r_7: + x(7,9) - x(6,7) - x(5,7) = 0
r_8: + x(8,9) - x(6,8) - x(3,8) = 0
r_9: - x(8,9) - x(7,9) = -20
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Bounds
0 <= x(1,4) <= 23
0 <= x(1,2) <= 14
0 <= x(2,4) <= 9
0 <= x(2,3) <= 10
0 <= x(3,8) <= 18
2 <= x(3,5) <= 12
0 <= x(4,5) <= 26
0 <= x(5,7) <= 4
0 <= x(5,6) <= 25
0 <= x(5,2) <= 11
4 <= x(6,8) <= 8
0 <= x(6,7) <= 7
0 <= x(7,9) <= 15
0 <= x(8,9) <= 20

End

6.3.5 glp mincost okalg—solve minimum cost flow problem
with out-of-kilter algorithm

Synopsis

int glp_mincost_okalg(glp_graph *G, int v_rhs, int a_low,
int a_cap, int a_cost, double *sol, int a_x, int v_pi);

Description

The routine glp_mincost_okalg finds optimal solution to the minimum
cost flow problem with the out-of-kilter algorithm.3 Note that this routine
requires all the problem data to be integer-valued.

The parameter G is a graph (network) program object which specifies
the minimum cost flow problem instance to be solved.

The parameter v_rhs specifies an offset of the field of type double in
the vertex data block, which contains bi, the supply/demand value. This
value must be integer in the range [−INT_MAX, +INT_MAX]. If v_rhs < 0, it
is assumed that bi = 0 for all nodes.

3GLPK implementation of the out-of-kilter algorithm is based on the following book:
L. R. Ford, Jr., and D. R. Fulkerson, “Flows in Networks,” The RAND Corp., Report
R-375-PR (August 1962), Chap. III “Minimal Cost Flow Problems,” pp. 113-26.
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The parameter a_low specifies an offset of the field of type double in
the arc data block, which contains lij , the lower bound to the arc flow. This
bound must be integer in the range [0, INT_MAX]. If a_low < 0, it is assumed
that lij = 0 for all arcs.

The parameter a_cap specifies an offset of the field of type double in the
arc data block, which contains uij , the upper bound to the arc flow (the arc
capacity). This bound must be integer in the range [lij , INT_MAX]. If a_cap
< 0, it is assumed that uij = 1 for all arcs.

The parameter a_cost specifies an offset of the field of type double in
the arc data block, which contains cij , the per-unit cost of the arc flow. This
value must be integer in the range [−INT_MAX, +INT_MAX]. If a_cost < 0,
it is assumed that cij = 0 for all arcs.

The parameter sol specifies a location, to which the routine stores the
objective value (that is, the total cost) found. If sol is NULL, the objective
value is not stored.

The parameter a_x specifies an offset of the field of type double in the
arc data block, to which the routine stores xij , the arc flow found. If a_x
< 0, the arc flow value is not stored.

The parameter v_pi specifies an offset of the field of type double in
the vertex data block, to which the routine stores πi, the node potential,
which is the Lagrange multiplier for the corresponding flow conservation
equality constraint (see (2) in Subsection “Background”). If necessary, the
application program may use the node potentials to compute λij , reduced
costs of the arc flows xij , which are the Lagrange multipliers for the arc flow
bound constraints (see (3) ibid.), using the following formula:

λij = cij − (πi − πj),

where cij is the per-unit cost for arc (i, j).
Note that all solution components (the objective value, arc flows, and

node potentials) computed by the routine are always integer-valued.

Returns

0 Optimal solution found.
GLP_ENOPFS No (primal) feasible solution exists.
GLP_EDATA Unable to start the search, because some problem data are

either not integer-valued or out of range. This code is also
returned if the total supply, which is the sum of bi over all
source nodes (nodes with bi > 0), exceeds INT_MAX.
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GLP_ERANGE The search was prematurely terminated because of integer
overflow.

GLP_EFAIL An error has been detected in the program logic. (If this
code is returned for your problem instance, please report
to <bug-glpk@gnu.org>.)

Comments

By design the out-of-kilter algorithm is applicable only to networks, where
bi = 0 for all nodes, i.e. actually this algorithm finds a minimal cost cir-
culation. Due to this requirement the routine glp_mincost_okalg converts
the original network to a network suitable for the out-of-kilter algorithm in
the following way:4

1) it adds two auxiliary nodes s and t;
2) for each original node i with bi > 0 the routine adds auxiliary supply

arc (s → i), flow xsi through which is costless (csi = 0) and fixed to +bi

(lsi = usi = +bi);
3) for each original node i with bi < 0 the routine adds auxiliary demand

arc (i → t), flow xit through which is costless (cit = 0) and fixed to −bi

(lit = uit = −bi);
4) finally, the routine adds auxiliary feedback arc (t → s), flow xts

through which is also costless (cts = 0) and fixed to F (lts = uts = F ),
where F =

∑

bi>0

bi is the total supply.

Example

The example program below reads the minimum cost problem instance
in DIMACS format from file ‘sample.min’, solves it by using the routine
glp_mincost_okalg, and writes the solution found to the standard output.

4The conversion is performed internally and does not change the original network
program object passed to the routine.
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#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

typedef struct { double rhs, pi; } v_data;
typedef struct { double low, cap, cost, x; } a_data;

#define node(v) ((v_data *)((v)->data))
#define arc(a) ((a_data *)((a)->data))

int main(void)
{ glp_graph *G;

glp_vertex *v, *w;
glp_arc *a;
int i, ret;
double sol;
G = glp_create_graph(sizeof(v_data), sizeof(a_data));
glp_read_mincost(G, offsetof(v_data, rhs),

offsetof(a_data, low), offsetof(a_data, cap),
offsetof(a_data, cost), "sample.min");

ret = glp_mincost_okalg(G, offsetof(v_data, rhs),
offsetof(a_data, low), offsetof(a_data, cap),
offsetof(a_data, cost), &sol, offsetof(a_data, x),
offsetof(v_data, pi));

printf("ret = %d; sol = %5g\n", ret, sol);
for (i = 1; i <= G->nv; i++)
{ v = G->v[i];

printf("node %d: pi = %5g\n", i, node(v)->pi);
for (a = v->out; a != NULL; a = a->t_next)
{ w = a->head;

printf("arc %d->%d: x = %5g; lambda = %5g\n",
v->i, w->i, arc(a)->x,
arc(a)->cost - (node(v)->pi - node(w)->pi));

}
}
glp_delete_graph(G);
return 0;

}
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If ‘sample.min’ is the example data file from the subsection describing
the routine glp_read_mincost, the output may look like follows:

Reading min-cost flow problem data from ‘sample.min’...
Flow network has 9 nodes and 14 arcs
24 lines were read
ret = 0; sol = 213
node 1: pi = -12
arc 1->4: x = 13; lambda = 0
arc 1->2: x = 7; lambda = 0
node 2: pi = -12
arc 2->4: x = 0; lambda = 3
arc 2->3: x = 7; lambda = 0
node 3: pi = -14
arc 3->8: x = 5; lambda = 0
arc 3->5: x = 2; lambda = 3
node 4: pi = -12
arc 4->5: x = 13; lambda = 0
node 5: pi = -12
arc 5->7: x = 4; lambda = -1
arc 5->6: x = 11; lambda = 0
arc 5->2: x = 0; lambda = 1
node 6: pi = -17
arc 6->8: x = 4; lambda = 3
arc 6->7: x = 7; lambda = -3
node 7: pi = -20
arc 7->9: x = 11; lambda = 0
node 8: pi = -14
arc 8->9: x = 9; lambda = 0
node 9: pi = -23
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6.3.6 glp netgen—Klingman’s network problem generator

Synopsis

int glp_netgen(glp_graph *G, int v_rhs, int a_cap, int a_cost,
const int parm[1+15]);

Description

The routine glp_netgen is a GLPK version of the network problem gen-
erator developed by Dr. Darwin Klingman.5 It can create capacitated and
uncapacitated minimum cost flow (or transshipment), transportation, and
assignment problems.

The parameter G specifies the graph object, to which the generated prob-
lem data have to be stored. Note that on entry the graph object is erased
with the routine glp_erase_graph.

The parameter v_rhs specifies an offset of the field of type double in the
vertex data block, to which the routine stores the supply or demand value.
If v_rhs < 0, the value is not stored.

The parameter a_cap specifies an offset of the field of type double in
the arc data block, to which the routine stores the arc capacity. If a_cap
< 0, the capacity is not stored.

The parameter a_cost specifies an offset of the field of type double in
the arc data block, to which the routine stores the per-unit cost if the arc
flow. If a_cost < 0, the cost is not stored.

The array parm contains description of the network to be generated:
parm[0] not used
parm[1] iseed 8-digit positive random number seed
parm[2] nprob 8-digit problem id number
parm[3] nodes total number of nodes
parm[4] nsorc total number of source nodes

(including transshipment nodes)
parm[5] nsink total number of sink nodes

(including transshipment nodes)
parm[6] iarcs number of arc
parm[7] mincst minimum cost for arcs
parm[8] maxcst maximum cost for arcs
parm[9] itsup total supply

5D. Klingman, A. Napier, and J. Stutz. NETGEN: A program for generating large scale
capacitated assignment, transportation, and minimum cost flow networks. Management
Science 20 (1974), 814-20.
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parm[10] ntsorc number of transshipment source nodes
parm[11] ntsink number of transshipment sink nodes
parm[12] iphic percentage of skeleton arcs to be given the maxi-

mum cost
parm[13] ipcap percentage of arcs to be capacitated
parm[14] mincap minimum upper bound for capacitated arcs
parm[15] maxcap maximum upper bound for capacitated arcs

Notes

1. The routine generates a transportation problem if:

nsorc + nsink = nodes, ntsorc = 0, and ntsink = 0.

2. The routine generates an assignment problem if the requirements for
a transportation problem are met and:

nsorc = nsink and itsup = nsorc.

3. The routine always generates connected graphs. So, if the number of
requested arcs has been reached and the generated instance is not fully con-
nected, the routine generates a few remaining arcs to ensure connectedness.
Thus, the actual number of arcs generated by the routine may be greater
than the requested number of arcs.

Returns

If the instance was successfully generated, the routine glp_netgen returns
zero; otherwise, if specified parameters are inconsistent, the routine returns
a non-zero error code.

6.3.7 glp gridgen—grid-like network problem generator

Synopsis

int glp_gridgen(glp_graph *G, int v_rhs, int a_cap, int a_cost,
const int parm[1+14]);

Description

The routine glp_gridgen is a GLPK version of the grid-like network prob-
lem generator developed by Yusin Lee and Jim Orlin.6

6Y. Lee and J. Orlin. GRIDGEN generator., 1991. The original code is publically avail-
able from <ftp://dimacs.rutgers.edu/pub/netflow/generators/network/gridgen>.
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The parameter G specifies the graph object, to which the generated prob-
lem data have to be stored. Note that on entry the graph object is erased
with the routine glp_erase_graph.

The parameter v_rhs specifies an offset of the field of type double in the
vertex data block, to which the routine stores the supply or demand value.
If v_rhs < 0, the value is not stored.

The parameter a_cap specifies an offset of the field of type double in
the arc data block, to which the routine stores the arc capacity. If a_cap
< 0, the capacity is not stored.

The parameter a_cost specifies an offset of the field of type double in
the arc data block, to which the routine stores the per-unit cost if the arc
flow. If a_cost < 0, the cost is not stored.

The array parm contains parameters of the network to be generated:
parm[0] not used
parm[1] two-ways arcs indicator:

1 — if links in both direction should be generated
0 — otherwise

parm[2] random number seed (a positive integer)
parm[3] number of nodes (the number of nodes generated might be

slightly different to make the network a grid)
parm[4] grid width
parm[5] number of sources
parm[6] number of sinks
parm[7] average degree
parm[8] total flow
parm[9] distribution of arc costs:

1 — uniform
2 — exponential

parm[10] lower bound for arc cost (uniform)
100λ (exponential)

parm[11] upper bound for arc cost (uniform)
not used (exponential)

parm[12] distribution of arc capacities:
1 — uniform
2 — exponential

parm[13] lower bound for arc capacity (uniform)
100λ (exponential)

parm[14] upper bound for arc capacity (uniform)
not used (exponential)
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Returns

If the instance was successfully generated, the routine glp_gridgen returns
zero; otherwise, if specified parameters are inconsistent, the routine returns
a non-zero error code.

Comments7

This network generator generates a grid-like network plus a super node. In
additional to the arcs connecting the nodes in the grid, there is an arc from
each supply node to the super node and from the super node to each demand
node to guarantee feasiblity. These arcs have very high costs and very big
capacities.

The idea of this network generator is as follows: First, a grid of n1×n2 is
generated. For example, 5× 3. The nodes are numbered as 1 to 15, and the
supernode is numbered as n1×n2+1. Then arcs between adjacent nodes are
generated. For these arcs, the user is allowed to specify either to generate
two-way arcs or one-way arcs. If two-way arcs are to be generated, two arcs,
one in each direction, will be generated between each adjacent node pairs.
Otherwise, only one arc will be generated. If this is the case, the arcs will
be generated in alterntive directions as shown below.

1 //

²²

2 // 3 //

²²

4 // 5

²²
6

²²

7oo

OO

8oo

²²

9oo

OO

10oo

²²
11 // 12 //

OO

13 // 14 //

OO

15

Then the arcs between the super node and the source/sink nodes are
added as mentioned before. If the number of arcs still doesn’t reach the
requirement, additional arcs will be added by uniformly picking random
node pairs. There is no checking to prevent multiple arcs between any pair
of nodes. However, there will be no self-arcs (arcs that poins back to its tail
node) in the network.

The source and sink nodes are selected uniformly in the network, and
the imbalances of each source/sink node are also assigned by uniform dis-
tribution.

7This material is based on comments to the original version of GRIDGEN.
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6.4 Maximum flow problem

6.4.1 Background

The maximum flow problem (MAXFLOW) is stated as follows. Let there be
given a directed graph (flow network) G = (V, A), where V is a set of vertices
(nodes), and A ⊆ V × V is a set of arcs. Let also for each arc a = (i, j) ∈ A
there be given its capacity uij . The problem is, for given source node s ∈ V
and sink node t ∈ V , to find flows xij through every arc of the network,
which satisfy the specified arc capacities and the conservation constraints
at all nodes, and maximize the total flow F through the network from s
to t. Here the conservation constraint at a node means that the total flow
entering this node through its incoming arcs (plus F , if it is the source node)
must be equal to the total flow leaving this node through its outgoing arcs
(plus F , if it is the sink node).

An example of the maximum flow problem, where s = v1 and t = v9, is
shown on Fig. 2.

F

²² ²O
²O
²O

v2 10 //

9

²²

v3

12

²²

18 // v8

20
MMMMM

&&MMMMM
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14qqqqq

88qqqqq

23
MMMMM

&&MMMMM

v6

7

²²

8

OO

v9

²² ²O
²O
²O

v4 26 // v5

11;;;;;;;;

]];;;;;;;;

25qqqqq

88qqqqq

4 // v7

15qqqqq

88qqqqq

F

Fig. 2. An example of the maximum flow problem.

The maximum flow problem can be naturally formulated as the following
LP problem:

maximize
F (4)

subject to

∑

(i,j)∈A

xij −
∑

(j,i)∈A

xji =





+F, for i = s
0, for all i ∈ V \{s, t}

−F, for i = t
(5)

0 ≤ xij ≤ uij for all (i, j) ∈ A (6)

where F ≥ 0 is an additional variable playing the role of the objective.
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Another LP formulation of the maximum flow problem, which does not
include the variable F , is the following:

maximize

z =
∑

(s,j)∈A

xsj −
∑

(j,s)∈A

xjs (= F ) (7)

subject to

∑

(i,j)∈A

xij −
∑

(j,i)∈A

xji





≥ 0, for i = s
= 0, for all i ∈ V \{s, t}
≤ 0, for i = t

(8)

0 ≤ xij ≤ uij for all (i, j) ∈ A (9)

6.4.2 glp read maxflow—read maximum flow problem data
in DIMACS format

Synopsis

int glp_read_maxflow(glp_graph *G, int *s, int *t, int a_cap,
const char *fname);

Description

The routine glp_read_maxflow reads the maximum flow problem data from
a text file in DIMACS format.

The parameter G specifies the graph object, to which the problem data
have to be stored. Note that before reading data the current content of the
graph object is completely erased with the routine glp_erase_graph.

The pointer s specifies a location, to which the routine stores the ordinal
number of the source node. If s is NULL, the source node number is not
stored.

The pointer t specifies a location, to which the routine stores the ordinal
number of the sink node. If t is NULL, the sink node number is not stored.

The parameter a_cap specifies an offset of the field of type double in the
arc data block, to which the routine stores uij , the arc capacity. If a_cap
< 0, the arc capacity is not stored.

The character string fname specifies the name of a text file to be read
in. (If the file name name ends with the suffix ‘.gz’, the file is assumed to
be compressed, in which case the routine decompresses it “on the fly”.)
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Returns

If the operation was successful, the routine returns zero. Otherwise, it prints
an error message and returns non-zero.

Example

typedef struct
{ /* arc data block */

...
double cap;
...

} a_data;

int main(void)
{ glp_graph *G;

int s, t, ret;
G = glp_create_graph(..., sizeof(a_data));
ret = glp_read_maxflow(G, &s, &t, offsetof(a_data, cap),

"sample.max");
if (ret != 0) goto ...
...

}

DIMACS maximum flow problem format8

The DIMACS input file is a plain ASCII text file. It contains lines of several
types described below. A line is terminated with an end-of-line character.
Fields in each line are separated by at least one blank space. Each line
begins with a one-character designator to identify the line type.

Note that DIMACS requires all numerical quantities to be integers in the
range [−231, 231− 1] while GLPK allows the quantities to be floating-point
numbers.

8This material is based on the paper “The First DIMACS International Algorithm
Implementation Challenge: Problem Definitions and Specifications”, which is publically
available at http://dimacs.rutgers.edu/Challenges/.
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Comment lines. Comment lines give human-readable information about
the file and are ignored by programs. Comment lines can appear anywhere
in the file. Each comment line begins with a lower-case character c.

c This is a comment line

Problem line. There is one problem line per data file. The problem line
must appear before any node or arc descriptor lines. It has the following
format:

p max NODES ARCS

The lower-case character p signifies that this is a problem line. The three-
character problem designator max identifies the file as containing specifica-
tion information for the maximum flow problem. The NODES field contains
an integer value specifying the number of nodes in the network. The ARCS
field contains an integer value specifying the number of arcs in the network.

Node descriptors. Two node descriptor lines for the source and sink
nodes must appear before all arc descriptor lines. They may appear in
either order, each with the following format:

n ID WHICH

The lower-case character n signifies that this a node descriptor line. The ID
field gives a node identification number, an integer between 1 and NODES.
The WHICH field gives either a lower-case s or t, designating the source and
sink, respectively.

Arc descriptors. There is one arc descriptor line for each arc in the
network. Arc descriptor lines are of the following format:

a SRC DST CAP

The lower-case character a signifies that this is an arc descriptor line. For a
directed arc (i, j) the SRC field gives the identification number i for the tail
endpoint, and the DST field gives the identification number j for the head
endpoint. Identification numbers are integers between 1 and NODES. The
CAP field gives the arc capacity, i.e. maximum amount of flow that can be
sent along arc (i, j) in a feasible flow.
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Example. Below here is an example of the data file in DIMACS format
corresponding to the maximum flow problem shown on Fig 2.

c sample.max
c
c This is an example of the maximum flow problem data
c in DIMACS format.
c
p max 9 14
c
n 1 s
n 9 t
c
a 1 2 14
a 1 4 23
a 2 3 10
a 2 4 9
a 3 5 12
a 3 8 18
a 4 5 26
a 5 2 11
a 5 6 25
a 5 7 4
a 6 7 7
a 6 8 8
a 7 9 15
a 8 9 20
c
c eof
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6.4.3 glp write maxflow—write maximum flow problem data
in DIMACS format

Synopsis

int glp_write_maxflow(glp_graph *G, int s, int t, int a_cap,
const char *fname);

Description

The routine glp_write_maxflow writes the maximum flow problem data to
a text file in DIMACS format.

The parameter G is the graph (network) program object, which specifies
the maximum flow problem instance.

The parameter s specifies the ordinal number of the source node.
The parameter t specifies the ordinal number of the sink node.
The parameter a_cap specifies an offset of the field of type double in

the arc data block, which contains uij , the upper bound to the arc flow (the
arc capacity). If the upper bound is specified as DBL_MAX, it is assumed that
uij = ∞, i.e. the arc is uncapacitated. If a_cap < 0, it is assumed that
uij = 1 for all arcs.

The character string fname specifies a name of the text file to be writ-
ten out. (If the file name ends with suffix ‘.gz’, the file is assumed to be
compressed, in which case the routine performs automatic compression on
writing it.)

Returns

If the operation was successful, the routine returns zero. Otherwise, it prints
an error message and returns non-zero.

6.4.4 glp maxflow lp—convert maximum flow problem to LP

Synopsis

void glp_maxflow_lp(glp_prob *lp, glp_graph *G, int names,
int s, int t, int a_cap);

Description

The routine glp_maxflow_lp builds LP problem (7)—(9), which corre-
sponds to the specified maximum flow problem.
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The parameter lp is the resultant LP problem object to be built. Note
that on entry its current content is erased with the routine glp_erase_prob.

The parameter G is the graph (network) program object, which specifies
the maximum flow problem instance.

The parameter names is a flag. If it is GLP_ON, the routine uses symbolic
names of the graph object components to assign symbolic names to the LP
problem object components. If the flag is GLP_OFF, no symbolic names are
assigned.

The parameter s specifies the ordinal number of the source node.
The parameter t specifies the ordinal number of the sink node.
The parameter a_cap specifies an offset of the field of type double in

the arc data block, which contains uij , the upper bound to the arc flow (the
arc capacity). If the upper bound is specified as DBL_MAX, it is assumed that
uij = ∞, i.e. the arc is uncapacitated. If a_cap < 0, it is assumed that
uij = 1 for all arcs.

Example

The example program below reads the maximum flow problem in DIMACS
format from file ‘sample.max’, converts the instance to LP, and then writes
the resultant LP in CPLEX format to file ‘maxflow.lp’.

#include <stddef.h>
#include <glpk.h>

int main(void)
{ glp_graph *G;

glp_prob *lp;
int s, t;
G = glp_create_graph(0, sizeof(double));
glp_read_maxflow(G, &s, &t, 0, "sample.max");
lp = glp_create_prob();
glp_maxflow_lp(lp, G, GLP_ON, s, t, 0);
glp_delete_graph(G);
glp_write_lp(lp, NULL, "maxflow.lp");
glp_delete_prob(lp);
return 0;

}
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If ‘sample.max’ is the example data file from the previous subsection,
the output ‘maxflow.lp’ may look like follows:

Maximize
obj: + x(1,4) + x(1,2)

Subject To
r_1: + x(1,2) + x(1,4) >= 0
r_2: - x(5,2) + x(2,3) + x(2,4) - x(1,2) = 0
r_3: + x(3,5) + x(3,8) - x(2,3) = 0
r_4: + x(4,5) - x(2,4) - x(1,4) = 0
r_5: + x(5,2) + x(5,6) + x(5,7) - x(4,5) - x(3,5) = 0
r_6: + x(6,7) + x(6,8) - x(5,6) = 0
r_7: + x(7,9) - x(6,7) - x(5,7) = 0
r_8: + x(8,9) - x(6,8) - x(3,8) = 0
r_9: - x(8,9) - x(7,9) <= 0

Bounds
0 <= x(1,4) <= 23
0 <= x(1,2) <= 14
0 <= x(2,4) <= 9
0 <= x(2,3) <= 10
0 <= x(3,8) <= 18
0 <= x(3,5) <= 12
0 <= x(4,5) <= 26
0 <= x(5,7) <= 4
0 <= x(5,6) <= 25
0 <= x(5,2) <= 11
0 <= x(6,8) <= 8
0 <= x(6,7) <= 7
0 <= x(7,9) <= 15
0 <= x(8,9) <= 20

End
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6.4.5 glp maxflow ffalg—solve maximum flow problem with
Ford-Fulkerson algorithm

Synopsis

int glp_maxflow_ffalg(glp_graph *G, int s, int t, int a_cap,
double *sol, int a_x, int v_cut);

Description

The routine glp_mincost_ffalg finds optimal solution to the maximum
flow problem with the Ford-Fulkerson algorithm.9 Note that this routine
requires all the problem data to be integer-valued.

The parameter G is a graph (network) program object which specifies
the maximum flow problem instance to be solved.

The parameter s specifies the ordinal number of the source node.
The parameter t specifies the ordinal number of the sink node.
The parameter a_cap specifies an offset of the field of type double in the

arc data block, which contains uij , the upper bound to the arc flow (the arc
capacity). This bound must be integer in the range [0, INT_MAX]. If a_cap
< 0, it is assumed that uij = 1 for all arcs.

The parameter sol specifies a location, to which the routine stores the
objective value (that is, the total flow from s to t) found. If sol is NULL,
the objective value is not stored.

The parameter a_x specifies an offset of the field of type double in the
arc data block, to which the routine stores xij , the arc flow found. If a_x
< 0, the arc flow values are not stored.

The parameter v_cut specifies an offset of the field of type int in the
vertex data block, to which the routine stores node flags corresponding to
the optimal solution found: if the node flag is 1, the node is labelled, and if
the node flag is 0, the node is unlabelled. The calling program may use these
node flags to determine the minimal cut, which is a subset of arcs whose one
endpoint is labelled and other is not. If v_cut < 0, the node flags are not
stored.

Note that all solution components (the objective value and arc flows)
computed by the routine are always integer-valued.

9GLPK implementation of the Ford-Fulkerson algorithm is based on the following book:
L. R. Ford, Jr., and D. R. Fulkerson, “Flows in Networks,” The RAND Corp., Report
R-375-PR (August 1962), Chap. I “Static Maximal Flow,” pp. 30-33.
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Returns

0 Optimal solution found.
GLP_EDATA Unable to start the search, because some problem data are

either not integer-valued or out of range.

Example

The example program shown below reads the maximum flow problem in-
stance in DIMACS format from file ‘sample.max’, solves it using the routine
glp_maxflow_ffalg, and write the solution found to the standard output.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>

typedef struct { int cut; } v_data;
typedef struct { double cap, x; } a_data;

#define node(v) ((v_data *)((v)->data))
#define arc(a) ((a_data *)((a)->data))

int main(void)
{ glp_graph *G;

glp_vertex *v, *w;
glp_arc *a;
int i, s, t, ret;
double sol;
G = glp_create_graph(sizeof(v_data), sizeof(a_data));
glp_read_maxflow(G, &s, &t, offsetof(a_data, cap),

"sample.max");
ret = glp_maxflow_ffalg(G, s, t, offsetof(a_data, cap),

&sol, offsetof(a_data, x), offsetof(v_data, cut));
printf("ret = %d; sol = %5g\n", ret, sol);
for (i = 1; i <= G->nv; i++)
{ v = G->v[i];

for (a = v->out; a != NULL; a = a->t_next)
{ w = a->head;

printf("x[%d->%d] = %5g (%d)\n", v->i, w->i,
arc(a)->x, node(v)->cut ^ node(w)->cut);
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}
}
glp_delete_graph(G);
return 0;

}

If ‘sample.max’ is the example data file from the subsection describing
the routine glp_read_maxflow, the output may look like follows:

Reading maximum flow problem data from ‘sample.max’...
Flow network has 9 nodes and 14 arcs
24 lines were read
ret = 0; sol = 29
x[1->4] = 19 (0)
x[1->2] = 10 (0)
x[2->4] = 0 (0)
x[2->3] = 10 (1)
x[3->8] = 10 (0)
x[3->5] = 0 (1)
x[4->5] = 19 (0)
x[5->7] = 4 (1)
x[5->6] = 15 (0)
x[5->2] = 0 (0)
x[6->8] = 8 (1)
x[6->7] = 7 (1)
x[7->9] = 11 (0)
x[8->9] = 18 (0)
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6.4.6 glp rmfgen—Goldfarb’s maximum flow problem gen-
erator

Synopsis

int glp_rmfgen(glp_graph *G, int *s, int *t, int a_cap,
const int parm[1+5]);

Description

The routine glp_rmfgen is a GLPK version of the maximum flow problem
generator developed by D. Goldfarb and M. Grigoriadis.10,11,12

The parameter G specifies the graph object, to which the generated prob-
lem data have to be stored. Note that on entry the graph object is erased
with the routine glp_erase_graph.

The pointers s and t specify locations, to which the routine stores the
source and sink node numbers, respectively. If s or t is NULL, corresponding
node number is not stored.

The parameter a_cap specifies an offset of the field of type double in
the arc data block, to which the routine stores the arc capacity. If a_cap
< 0, the capacity is not stored.

The array parm contains description of the network to be generated:
parm[0] not used
parm[1] seed random number seed (a positive integer)
parm[2] a frame size
parm[3] b depth
parm[4] c1 minimal arc capacity
parm[5] c2 maximal arc capacity

Returns

If the instance was successfully generated, the routine glp_netgen returns
zero; otherwise, if specified parameters are inconsistent, the routine returns
a non-zero error code.

10D. Goldfarb and M. D. Grigoriadis, “A computational comparison of the Dinic and
network simplex methods for maximum flow.” Annals of Op. Res. 13 (1988), pp. 83-123.

11U. Derigs and W. Meier, “Implementing Goldberg’s max-flow algorithm: A computa-
tional investigation.” Zeitschrift für Operations Research 33 (1989), pp. 383-403.

12The original code of RMFGEN implemented by Tamas Badics is publically available
from <ftp://dimacs.rutgers.edu/pub/netflow/generators/network/genrmf>.
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Comments13

The generated network is as follows. It has b pieces of frames of size a× a.
(So alltogether the number of vertices is a× a× b.)

In each frame all the vertices are connected with their neighbours (forth
and back). In addition the vertices of a frame are connected one to one with
the vertices of next frame using a random permutation of those vertices.

The source is the lower left vertex of the first frame, the sink is the upper
right vertex of the b-th frame.

t
+-------+
| .|
| . |

/ | / |
+-------+/ -+ b
| | |/.

a | -v- |/
| | |/
+-------+ 1

s a

The capacities are randomly chosen integers from the range of [c1, c2] in
the case of interconnecting edges, and c2 · a2 for the in-frame edges.

13This material is based on comments to the original version of RMFGEN.
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Appendix A

Installing GLPK on Your
Computer

A.1 Obtaining GLPK distribution file

The distrubution file for the most recent version of the GLPK package can be
downloaded from <ftp://ftp.gnu.org/gnu/glpk/> or from some mirror
GNU ftp sites; for details see <http://www.gnu.org/order/ftp.html>.

A.2 Unpacking the distribution file

The GLPK package (like all other GNU software) is distributed in the form
of packed archive. This is one file named glpk-x.y.tar.gz, where x is the
major version number and y is the minor version number.

In order to prepare the distribution for installation you should:
1. Copy the GLPK distribution file to some subdirectory.
2. Enter the command gzip -d glpk-x.y.tar.gz in order to unpack

the distribution file. After unpacking the name of the distribution file will
be automatically changed to glpk-x.y.tar.

3. Enter the command tar -x < glpk-x.y.tar in order to unarchive
the distribution. After this operation the subdirectory glpk-x.y, which is
the GLPK distribution, will be automatically created.

A.3 Configuring the package

After you have unpacked and unarchived GLPK distribution you should con-
figure the package, i.e. automatically tune it for your computer (platform).
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Normally, you should just cd to the subdirectory glpk-x.y and enter the
command ./configure. If you are using csh on an old version of System V,
you might need to type sh configure instead to prevent csh from trying
execute configure itself.

The configure shell script attempts to guess correct values for various
system-dependent variables used during compilation, and creates Makefile.
It also creates a file config.status that you can run in the future to recreate
the current configuration.

Running configure takes about a few minutes. While it is running, it
displays some informational messages that tell you what it is doing. If you
don’t want to see these messages, run configure with its standard output
redirected to dev/null; for example, ./configure >/dev/null.

A.4 Compiling and checking the package

Normally, in order to compile the package you should just enter the com-
mand make. This command reads Makefile generated by configure and
automatically performs all necessary job.

The result of compilation is:
• the file libglpk.a, which is a library archive that contains object code

for all GLPK routines; and
• the program glpsol, which is a stand-alone LP/MIP solver.
If you want, you can override the make variables CFLAGS and LDFLAGS

like this:
make CFLAGS=-O2 LDFLAGS=-s
To compile the package in a different directory from the one containing

the source code, you must use a version of make that supports VPATH variable,
such as GNU make. cd to the directory where you want the object files and
executables to go and run the configure script. configure automatically
checks for the source code in the directory that configure is in and in ‘..’.
If for some reason configure is not in the source code directory that you
are configuring, then it will report that it can’t find the source code. In
that case, run configure with the option --srcdir=DIR, where DIR is the
directory that contains the source code.

On systems that require unusual options for compilation or linking the
package’s configure script does not know about, you can give configure
initial values for variables by setting them in the environment. In Bourne-
compatible shells you can do that on the command line like this:

CC=’gcc -traditional’ LIBS=-lposix ./configure
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Here are the make variables that you might want to override with envi-
ronment variables when running configure.

For these variables, any value given in the environment overrides the
value that configure would choose:

• variable CC: C compiler program. The default is cc.
• variable INSTALL: program to use to install files. The default value is

install if you have it, otherwise cp.
For these variables, any value given in the environment is added to the

value that configure chooses:
• variable DEFS: configuration options, in the form ‘-Dfoo -Dbar . . . ’.
• variable LIBS: libraries to link with, in the form ‘-lfoo -lbar . . . ’.
In order to check the package (running some tests included in the distri-

bution) you can just enter the command make check.

A.5 Installing the package

Normally, in order to install the GLPK package (i.e. copy GLPK library,
header files, and the solver to the system places) you should just enter
the command make install (note that you should be the root user or a
superuser).

By default, make install will install the package’s files in the sub-
directories usr/local/bin, usr/local/lib, etc. You can specify an in-
stallation prefix other than /usr/local by giving configure the option
--prefix=PATH. Alternately, you can do so by consistently giving a value
for the prefix variable when you run make, e.g.

make prefix=/usr/gnu
make prefix=/usr/gnu install
After installing you can remove the program binaries and object files

from the source directory by typing make clean. To remove all files that
configure created (Makefile, config.status, etc.), just type the com-
mand make distclean.

The file configure.in is used to create configure by a program called
autoconf. You only need it if you want to remake configure using a newer
version of autoconf.

A.6 Uninstalling the package

In order to uninstall the GLPK package (i.e. delete all GLPK files from the
system places) you can enter the command make uninstall.
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Appendix B

MPS Format

B.1 Fixed MPS Format

The MPS format1 is intended for coding LP/MIP problem data. This format
assumes the formulation of LP/MIP problem (1.1)—(1.3) (see Section 1.1,
page 11).

MPS file is a text file, which contains two types of cards2: indicator cards
and data cards.

Indicator cards determine a kind of succeeding data. Each indicator card
has one word in uppercase letters beginning in column 1.

Data cards contain problem data. Each data card is divided into six
fixed fields:

Field 1 Field 2 Field 3 Field 4 Field 5 Feld 6
Columns 2—3 5—12 15—22 25—36 40—47 50—61
Contents Code Name Name Number Name Number

On a particular data card some fields may be optional.
Names are used to identify rows, columns, and some vectors (see below).
Aligning the indicator code in the field 1 to the left margin is optional.
All names specified in the fields 2, 3, and 5 should contain from 1 up to

8 arbitrary characters (except control characters). If a name is placed in the
1The MPS format was developed in 1960’s by IBM as input format for their mathemat-

ical programming system MPS/360. Today the MPS format is a most widely used format
understood by most mathematical programming packages. This appendix describes only
the features of the MPS format, which are implemented in the GLPK package.

2In 1960’s MPS file was a deck of 80-column punched cards, so the author decided to
keep the word “card”, which may be understood as “line of text file”.
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field 3 or 5, its first character should not be the dollar sign ‘$’. If a name
contains spaces, the spaces are ignored.

All numerical values in the fields 4 and 6 should be coded in the form
sxxEsyy, where s is the plus ‘+’ or the minus ‘-’ sign, xx is a real number
with optional decimal point, yy is an integer decimal exponent. Any number
should contain up to 12 characters. If the sign s is omitted, the plus sign is
assumed. The exponent part is optional. If a number contains spaces, the
spaces are ignored.

If a card has the asterisk ‘*’ in the column 1, this card is considered as
a comment and ignored. Besides, if the first character in the field 3 or 5 is
the dollar sign ‘$’, all characters from the dollar sign to the end of card are
considered as a comment and ignored.

MPS file should contain cards in the following order:
• NAME indicator card;
• ROWS indicator card;
• data cards specifying rows (constraints);
• COLUMNS indicator card;
• data cards specifying columns (structural variables) and constraint

coefficients;
• RHS indicator card;
• data cards specifying right-hand sides of constraints;
• RANGES indicator card;
• data cards specifying ranges for double-bounded constraints;
• BOUNDS indicator card;
• data cards specifying types and bounds of structural variables;
• ENDATA indicator card.
Section is a group of cards consisting of an indicator card and data cards

succeeding this indicator card. For example, the ROWS section consists of
the ROWS indicator card and data cards specifying rows.

The sections RHS, RANGES, and BOUNDS are optional and may be
omitted.

B.2 Free MPS Format

Free MPS format is an improved version of the standard (fixed) MPS format
described above.3 Note that all changes in free MPS format concern only

3This format was developed in the beginning of 1990’s by IBM as an alternative to the
standard fixed MPS format for Optimization Subroutine Library (OSL).
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the coding of data while the structure of data is the same for both fixed and
free versions of the MPS format.

In free MPS format indicator and data records4 may have arbitrary
length not limited to 80 characters. Fields of data records have no pre-
defined positions, i.e. the fields may begin in any position, except position
1, which must be blank, and must be separated from each other by one or
more blanks. However, the fields must appear in the same order as in fixed
MPS format.

Symbolic names in fields 2, 3, and 5 may be longer than 8 characters5

and must not contain embedded blanks.
Numeric values in fields 4 and 6 are limited to 12 characters and must

not contain embedded blanks.
Only six fields on each data record are used. Any other fields are ignored.
If the first character of any field (not necessarily fields 3 and 5) is the

dollar sign ($), all characters from the dollar sign to the end of record are
considered as a comment and ignored.

B.3 NAME indicator card

The NAME indicator card should be the first card in the MPS file (except
optional comment cards, which may precede the NAME card). This card
should contain the word NAME in the columns 1—4 and the problem name
in the field 3. The problem name is optional and may be omitted.

B.4 ROWS section

The ROWS section should start with the indicator card, which contains the
word ROWS in the columns 1—4.

Each data card in the ROWS section specifies one row (constraint) of
the problem. All these data cards have the following format.

‘N’ in the field 1 means that the row is free (unbounded):

−∞ < xi = ai1xm+1 + ai2xm+2 + . . . + ainxm+n < +∞;

‘L’ in the field 1 means that the row is of “less than or equal to” type:

−∞ < xi = ai1xm+1 + ai2xm+2 + . . . + ainxm+n ≤ bi;
4Record in free MPS format has the same meaning as card in fixed MPS format.
5GLPK allows symbolic names having up to 255 characters.
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‘G’ in the field 1 means that the row is of “greater than or equal to” type:

bi ≤ xi = ai1xm+1 + ai2xm+2 + . . . + ainxm+n < +∞;

‘E’ in the field 1 means that the row is of “equal to” type:

xi = ai1xm+1 + ai2xm+2 + . . . + ainxm+n ≤ bi,

where bi is a right-hand side. Note that each constraint has a corresponding
implictly defined auxiliary variable (xi above), whose value is a value of
the corresponding linear form, therefore row bounds can be considered as
bounds of such auxiliary variable.

The filed 2 specifies a row name (which is considered as the name of the
corresponding auxiliary variable).

The fields 3, 4, 5, and 6 are not used and should be empty.
Numerical values of all non-zero right-hand sides bi should be specified

in the RHS section (see below). All double-bounded (ranged) constraints
should be specified in the RANGES section (see below).

B.5 COLUMNS section

The COLUMNS section should start with the indicator card, which contains
the word COLUMNS in the columns 1—7.

Each data card in the COLUMNS section specifies one or two constraint
coefficients aij and also introduces names of columns, i.e. names of structural
variables. All these data cards have the following format.

The field 1 is not used and should be empty.
The field 2 specifies a column name. If this field is empty, the column

name from the immediately preceeding data card is assumed.
The field 3 specifies a row name defined in the ROWS section.
The field 4 specifies a numerical value of the constraint coefficient aij ,

which is placed in the corresponding row and column.
The fields 5 and 6 are optional. If they are used, they should contain a

second pair “row name—constraint coefficient” for the same column.
Elements of the constraint matrix (i.e. constraint coefficients) should be

enumerated in the column wise manner: all elements for the current column
should be specified before elements for the next column. However, the order
of rows in the COLUMNS section may differ from the order of rows in the
ROWS section.

Constraint coefficients not specified in the COLUMNS section are con-
sidered as zeros. Therefore zero coefficients may be omitted, although it is
allowed to explicitly specify them.
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B.6 RHS section

The RHS section should start with the indicator card, which contains the
word RHS in the columns 1—3.

Each data card in the RHS section specifies one or two right-hand sides bi

(see Section B.4, page 187). All these data cards have the following format.
The field 1 is not used and should be empty.
The field 2 specifies a name of the right-hand side (RHS) vector6. If this

field is empty, the RHS vector name from the immediately preceeding data
card is assumed.

The field 3 specifies a row name defined in the ROWS section.
The field 4 specifies a right-hand side bi for the row, whose name is

specified in the field 3. Depending on the row type bi is a lower bound (for
the row of G type), an upper bound (for the row of L type), or a fixed value
(for the row of E type).7

The fields 5 and 6 are optional. If they are used, they should contain a
second pair “row name—right-hand side” for the same RHS vector.

All right-hand sides for the current RHS vector should be specified before
right-hand sides for the next RHS vector. However, the order of rows in the
RHS section may differ from the order of rows in the ROWS section.

Right-hand sides not specified in the RHS section are considered as zeros.
Therefore zero right-hand sides may be omitted, although it is allowed to
explicitly specify them.

B.7 RANGES section

The RANGES section should start with the indicator card, which contains
the word RANGES in the columns 1—6.

Each data card in the RANGES section specifies one or two ranges for
double-side constraints, i.e. for constraints that are of the types L and G at
the same time:

li ≤ xi = ai1xm+1 + ai2xm+2 + . . . + ainxm+n ≤ ui,

where li is a lower bound, ui is an upper bound. All these data cards have
the following format.

6This feature allows the user to specify several RHS vectors in the same MPS file.
However, before solving the problem a particular RHS vector should be chosen.

7If the row is of N type, bi is considered as a constant term of the corresponding linear
form. Should note, however, this convention is non-standard.
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The field 1 is not used and should be empty.
The field 2 specifies a name of the range vector8. If this field is empty, the

range vector name from the immediately preceeding data card is assumed.
The field 3 specifies a row name defined in the ROWS section.
The field 4 specifies a range value ri (see the table below) for the row,

whose name is specified in the field 3.
The fields 5 and 6 are optional. If they are used, they should contain a

second pair “row name—range value” for the same range vector.
All range values for the current range vector should be specified before

range values for the next range vector. However, the order of rows in the
RANGES section may differ from the order of rows in the ROWS section.

For each double-side constraint specified in the RANGES section its
lower and upper bounds are determined as follows:

Row type Sign of ri Lower bound Upper bound
G + or − bi bi + |ri|
L + or − bi − |ri| bi

E + bi bi + |ri|
E − bi − |ri| bi

where bi is a right-hand side specified in the RHS section (if bi is not specified,
it is considered as zero), ri is a range value specified in the RANGES section.

B.8 BOUNDS section

The BOUNDS section should start with the indicator card, which contains
the word BOUNDS in the columns 1—6.

Each data card in the BOUNDS section specifies one (lower or upper)
bound for one structural variable (column). All these data cards have the
following format.

The indicator in the field 1 specifies the bound type:
LO lower bound;
UP upper bound;
FX fixed variable (lower and upper bounds are equal);
FR free variable (no bounds);
MI no lower bound (lower bound is “minus infinity”);
PL no upper bound (upper bound is “plus infinity”);

8This feature allows the user to specify several range vectors in the same MPS file.
However, before solving the problem a particular range vector should be chosen.
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The field 2 specifies a name of the bound vector9. If this field is empty,
the bound vector name from the immediately preceeding data card is as-
sumed.

The field 3 specifies a column name defined in the COLUMNS section.
The field 4 specifies a bound value. If the bound type in the field 1 differs

from LO, UP, and FX, the value in the field 4 is ignored and may be omitted.
The fields 5 and 6 are not used and should be empty.
All bound values for the current bound vector should be specified before

bound values for the next bound vector. However, the order of columns in
the BOUNDS section may differ from the order of columns in the COLUMNS
section. Specification of a lower bound should precede specification of an
upper bound for the same column (if both the lower and upper bounds are
explicitly specified).

By default, all columns (structural variables) are non-negative, i.e. have
zero lower bound and no upper bound. Lower (lj) and upper (uj) bounds of
some column (structural variable xj) are set in the following way, where sj

is a corresponding bound value explicitly specified in the BOUNDS section:
LO sets lj to sj ;
UP sets uj to sj ;
FX sets both lj and uj to sj ;
FR sets lj to −∞ and uj to +∞;
MI sets lj to −∞;
PL sets uj to +∞.

B.9 ENDATA indicator card

The ENDATA indicator card should be the last card of MPS file (except
optional comment cards, which may follow the ENDATA card). This card
should contain the word ENDATA in the columns 1—6.

B.10 Specifying objective function

It is impossible to explicitly specify the objective function and optimization
direction in the MPS file. However, the following implicit rule is used by
default: the first row of N type is considered as a row of the objective function
(i.e. the objective function is the corresponding auxiliary variable), which
should be minimized.

9This feature allows the user to specify several bound vectors in the same MPS file.
However, before solving the problem a particular bound vector should be chosen.
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GLPK also allows specifying a constant term of the objective function
as a right-hand side of the corresponding row in the RHS section.

B.11 Example of MPS file

In order to illustrate what the MPS format is, consider the following example
of LP problem:

minimize

value = .03 bin1 + .08 bin2 + .17 bin3 + .12 bin4 + .15 bin5 + .21 al + .38 si

subject to linear constraints

yield = bin1 + bin2 + bin3 + bin4 + bin5 + al + si
FE = .15 bin1 + .04 bin2 + .02 bin3 + .04 bin4 + .02 bin5 + .01 al + .03 si
CU = .03 bin1 + .05 bin2 + .08 bin3 + .02 bin4 + .06 bin5 + .01 al
MN = .02 bin1 + .04 bin2 + .01 bin3 + .02 bin4 + .02 bin5

MG = .02 bin1 + .03 bin2 + .01 bin5

AL = .70 bin1 + .75 bin2 + .80 bin3 + .75 bin4 + .80 bin5 + .97 al
SI = .02 bin1 + .06 bin2 + .08 bin3 + .12 bin4 + .02 bin5 + .01 al + .97 si

and bounds of (auxiliary and structural) variables

yield = 2000 0 ≤ bin1 ≤ 200
−∞ < FE ≤ 60 0 ≤ bin2 ≤ 2500
−∞ < CU ≤ 100 400 ≤ bin3 ≤ 800
−∞ < MN ≤ 40 100 ≤ bin4 ≤ 700
−∞ < MG ≤ 30 0 ≤ bin5 ≤ 1500
1500 ≤ AL < +∞ 0 ≤ al < +∞
250 ≤ SI ≤ 300 0 ≤ si < +∞

A complete MPS file which specifies data for this example is shown below
(the first two comment lines show card positions).

*000000001111111111222222222233333333334444444444555555555566
*234567890123456789012345678901234567890123456789012345678901
NAME PLAN
ROWS
N VALUE
E YIELD
L FE
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L CU
L MN
L MG
G AL
L SI

COLUMNS
BIN1 VALUE .03000 YIELD 1.00000

FE .15000 CU .03000
MN .02000 MG .02000
AL .70000 SI .02000

BIN2 VALUE .08000 YIELD 1.00000
FE .04000 CU .05000
MN .04000 MG .03000
AL .75000 SI .06000

BIN3 VALUE .17000 YIELD 1.00000
FE .02000 CU .08000
MN .01000 AL .80000
SI .08000

BIN4 VALUE .12000 YIELD 1.00000
FE .04000 CU .02000
MN .02000 AL .75000
SI .12000

BIN5 VALUE .15000 YIELD 1.00000
FE .02000 CU .06000
MN .02000 MG .01000
AL .80000 SI .02000

ALUM VALUE .21000 YIELD 1.00000
FE .01000 CU .01000
AL .97000 SI .01000

SILICON VALUE .38000 YIELD 1.00000
FE .03000 SI .97000

RHS
RHS1 YIELD 2000.00000 FE 60.00000

CU 100.00000 MN 40.00000
SI 300.00000
MG 30.00000 AL 1500.00000

RANGES
RNG1 SI 50.00000

BOUNDS
UP BND1 BIN1 200.00000
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UP BIN2 2500.00000
LO BIN3 400.00000
UP BIN3 800.00000
LO BIN4 100.00000
UP BIN4 700.00000
UP BIN5 1500.00000

ENDATA

B.12 MIP features

The MPS format provides two ways for introducing integer variables into
the problem.

The first way is most general and based on using special marker cards
INTORG and INTEND. These marker cards are placed in the COLUMNS
section. The INTORG card indicates the start of a group of integer variables
(columns), and the card INTEND indicates the end of the group. The MPS
file may contain arbitrary number of the marker cards.

The marker cards have the same format as the data cards (see Section
B.1, page 185).

The fields 1, 2, and 6 are not used and should be empty.
The field 2 should contain a marker name. This name may be arbitrary.
The field 3 should contain the word ’MARKER’ (including apostrophes).
The field 5 should contain either the word ’INTORG’ (including apostro-

phes) for the marker card, which begins a group of integer columns, or the
word ’INTEND’ (including apostrophes) for the marker card, which ends the
group.

The second way is less general but more convenient in some cases. It
allows the user declaring integer columns using three additional types of
bounds, which are specified in the field 1 of data cards in the BOUNDS
section (see Section B.8, page 190):

LI lower integer. This bound type specifies that the corresponding
column (structural variable), whose name is specified in field 3, is
of integer kind. In this case an lower bound of the column should
be specified in field 4 (like in the case of LO bound type).

UI upper integer. This bound type specifies that the corresponding
column (structural variable), whose name is specified in field 3, is
of integer kind. In this case an upper bound of the column should
be specified in field 4 (like in the case of UP bound type).
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BV binary variable. This bound type specifies that the corresponding
column (structural variable), whose name is specified in the field
3, is of integer kind, its lower bound is zero, and its upper bound
is one (thus, such variable being of integer kind can have only two
values zero and one). In this case a numeric value specified in the
field 4 is ignored and may be omitted.

Consider the following example of MIP problem:

minimize

Z = 3x1 + 7x2 − x3 + x4

subject to linear constraints

r1 = 2x1 − x2 + x3 − x4

r2 = x1 − x2 − 6x3 + 4x4

r3 = 5x1 + 3x2 + x4

and bound of variables

1 ≤ r1 < +∞ 0 ≤ x1 ≤ 4 (continuous)
8 ≤ r2 < +∞ 2 ≤ x2 ≤ 5 (integer)
5 ≤ r3 < +∞ 0 ≤ x3 ≤ 1 (integer)

3 ≤ x4 ≤ 8 (continuous)

The corresponding MPS file may look like the following:

NAME SAMP1
ROWS
N Z
G R1
G R2
G R3

COLUMNS
X1 R1 2.0 R2 1.0
X1 R3 5.0 Z 3.0
MARK0001 ’MARKER’ ’INTORG’
X2 R1 -1.0 R2 -1.0
X2 R3 3.0 Z 7.0
X3 R1 1.0 R2 -6.0
X3 Z -1.0
MARK0002 ’MARKER’ ’INTEND’
X4 R1 -1.0 R2 4.0
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X4 R3 1.0 Z 1.0
RHS

RHS1 R1 1.0
RHS1 R2 8.0
RHS1 R3 5.0

BOUNDS
UP BND1 X1 4.0
LO BND1 X2 2.0
UP BND1 X2 5.0
UP BND1 X3 1.0
LO BND1 X4 3.0
UP BND1 X4 8.0

ENDATA

The same example may be coded without INTORG/INTEND markers
using the bound type UI for the variable x2 and the bound type BV for the
variable x3:

NAME SAMP2
ROWS
N Z
G R1
G R2
G R3

COLUMNS
X1 R1 2.0 R2 1.0
X1 R3 5.0 Z 3.0
X2 R1 -1.0 R2 -1.0
X2 R3 3.0 Z 7.0
X3 R1 1.0 R2 -6.0
X3 Z -1.0
X4 R1 -1.0 R2 4.0
X4 R3 1.0 Z 1.0

RHS
RHS1 R1 1.0
RHS1 R2 8.0
RHS1 R3 5.0

BOUNDS
UP BND1 X1 4.0
LO BND1 X2 2.0
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UI BND1 X2 5.0
BV BND1 X3
LO BND1 X4 3.0
UP BND1 X4 8.0

ENDATA

B.13 Specifying predefined basis

The MPS format can also be used to specify some predefined basis for an
LP problem, i.e. to specify which rows and columns are basic and which are
non-basic.

The order of a basis file in the MPS format is:
• NAME indicator card;
• data cards (can appear in arbitrary order);
• ENDATA indicator card.
Each data card specifies either a pair ”basic column—non-basic row” or

a non-basic column. All the data cards have the following format.
‘XL’ in the field 1 means that a column, whose name is given in the field

2, is basic, and a row, whose name is given in the field 3, is non-basic and
placed on its lower bound.

‘XU’ in the field 1 means that a column, whose name is given in the field
2, is basic, and a row, whose name is given in the field 3, is non-basic and
placed on its upper bound.

‘LL’ in the field 1 means that a column, whose name is given in the field
3, is non-basic and placed on its lower bound.

‘UL’ in the field 1 means that a column, whose name is given in the field
3, is non-basic and placed on its upper bound.

The field 2 contains a column name.
If the indicator given in the field 1 is ‘XL’ or ‘XU’, the field 3 contains a

row name. Otherwise, if the indicator is ‘LL’ or ‘UL’, the field 3 is not used
and should be empty.

The field 4, 5, and 6 are not used and should be empty.
A basis file in the MPS format acts like a patch: it doesn’t specify a basis

completely, instead that it is just shows in what a given basis differs from
the ”standard” basis, where all rows (auxiliary variables) are assumed to be
basic and all columns (structural variables) are assumed to be non-basic.

As an example here is a basis file that specifies an optimal basis for the
example LP problem given in Section B.11, Page 192:
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*000000001111111111222222222233333333334444444444555555555566
*234567890123456789012345678901234567890123456789012345678901
NAME PLAN
XL BIN2 YIELD
XL BIN3 FE
XL BIN4 MN
XL ALUM AL
XL SILICON SI
LL BIN1
LL BIN5

ENDATA
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Appendix C

CPLEX LP Format

C.1 Prelude

The CPLEX LP format1 is intended for coding LP/MIP problem data. It
is a row-oriented format that assumes the formulation of LP/MIP problem
(1.1)—(1.3) (see Section 1.1, page 11).

CPLEX LP file is a plain text file written in CPLEX LP format. Each
text line of this file may contain up to 255 characters2. Blank lines are
ignored. If a line contains the backslash character (\), this character and
everything that follows it until the end of line are considered as a comment
and also ignored.

An LP file is coded by the user using the following elements:
• keywords;
• symbolic names;
• numeric constants;
• delimiters;
• blanks.

1The CPLEX LP format was developed in the end of 1980’s by CPLEX Optimization,
Inc. as an input format for the CPLEX linear programming system. Although the CPLEX
LP format is not as widely used as the MPS format, being row-oriented it is more conve-
nient for coding mathematical programming models by human. This appendix describes
only the features of the CPLEX LP format which are implemented in the GLPK package.

2GLPK allows text lines of arbitrary length.
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Keywords which may be used in the LP file are the following:

minimize minimum min
maximize maximum max
subject to such that s.t. st. st
bounds bound
general generals gen
integer integers int
binary binaries bin
infinity inf
free
end

All the keywords are case insensitive. Keywords given above on the same
line are equivalent. Any keyword (except infinity, inf, and free) being
used in the LP file must start at the beginning of a text line.

Symbolic names are used to identify the objective function, constraints
(rows), and variables (columns). All symbolic names are case sensitive and
may contain up to 16 alphanumeric characters3 (a, . . . , z, A, . . . , Z, 0, . . . ,
9) as well as the following characters:

! " # $ % & ( ) / , . ; ? @ _ ‘ ’ { } | ~

with exception that no symbolic name can begin with a digit or a period.
Numeric constants are used to denote constraint and objective coeffi-

cients, right-hand sides of constraints, and bounds of variables. They are
coded in the standard form xxEsyy, where xx is a real number with optional
decimal point, s is a sign (+ or -), yy is an integer decimal exponent. Nu-
meric constants may contain arbitrary number of characters. The exponent
part is optional. The letter ‘E’ can be coded as ‘e’. If the sign s is omitted,
plus is assumed.

Delimiters that may be used in the LP file are the following:

:
+
-
< <= =<
> >= =>
=

3GLPK allows symbolic names having up to 255 characters.
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Delimiters given above on the same line are equivalent. The meaning of the
delimiters will be explained below.

Blanks are non-significant characters. They may be used freely to im-
prove readability of the LP file. Besides, blanks should be used to separate
elements from each other if there is no other way to do that (for example,
to separate a keyword from a following symbolic name).

The order of an LP file is:
• objective function definition;
• constraints section;
• bounds section;
• general, integer, and binary sections (can appear in arbitrary order);
• end keyword.
These components are discussed in following sections.

C.2 Objective function definition

The objective function definition must appear first in the LP file. It defines
the objective function and specifies the optimization direction.

The objective function definition has the following form:
{
minimize
maximize

}
f : s c x s c x . . . s c x

where f is a symbolic name of the objective function, s is a sign + or -, c
is a numeric constant that denotes an objective coefficient, x is a symbolic
name of a variable.

If necessary, the objective function definition can be continued on as
many text lines as desired.

The name of the objective function is optional and may be omitted
(together with the semicolon that follows it). In this case the default name
‘obj’ is assigned to the objective function.

If the very first sign s is omitted, the sign plus is assumed. Other signs
cannot be omitted.

If some objective coefficient c is omitted, 1 is assumed.
Symbolic names x used to denote variables are recognized by context

and therefore needn’t to be declared somewhere else.
Here is an example of the objective function definition:

Minimize Z : - x1 + 2 x2 - 3.5 x3 + 4.997e3x(4) + x5 + x6 +
x7 - .01x8
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C.3 Constraints section

The constraints section must follow the objective function definition. It
defines a system of equality and/or inequality constraints.

The constraint section has the following form:

subject to
constraint1
constraint2

. . .
constraintm

where constrainti, i = 1, . . . , m, is a particular constraint definition.
Each constraint definition can be continued on as many text lines as

desired. However, each constraint definition must begin on a new line except
the very first constraint definition which can begin on the same line as the
keyword ‘subject to’.

Constraint definitions have the following form:

r : s c x s c x . . . s c x





<=
>=
=





b

where r is a symbolic name of a constraint, s is a sign + or -, c is a numeric
constant that denotes a constraint coefficient, x is a symbolic name of a
variable, b is a right-hand side.

The name r of a constraint (which is the name of the corresponding aux-
iliary variable) is optional and may be omitted (together with the semicolon
that follows it). In this case the default names like ‘r.nnn’ are assigned to
unnamed constraints.

The linear form s c x s c x . . . s c x in the left-hand side of a constraint
definition has exactly the same meaning as in the case of the objective
function definition (see above).

After the linear form one of the following delimiters that indicate the
constraint sense must be specified:

<= means ‘less than or equal to’
>= means ‘greater than or equal to’
= means ‘equal to’
The right hand side b is a numeric constant with an optional sign.
Here is an example of the constraints section:
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Subject To
one: y1 + 3 a1 - a2 - b >= 1.5
y2 + 2 a3 + 2

a4 - b >= -1.5
two : y4 + 3 a1 + 4 a5 - b <= +1
.20y5 + 5 a2 - b = 0
1.7 y6 - a6 + 5 a777 - b >= 1

(Should note that it is impossible to express ranged constraints in the
CPLEX LP format. Each a ranged constraint can be coded as two con-
straints with identical linear forms in the left-hand side, one of which spec-
ifies a lower bound and other does an upper one of the original ranged
constraint.)

C.4 Bounds section

The bounds section is intended to define bounds of variables. This section
is optional; if it is specified, it must follow the constraints section. If the
bound section is omitted, all variables are assumed to be non-negative (i.e.
that they have zero lower bound and no upper bound).

The bounds section has the following form:

bounds
definition1

definition2

. . .
definitionp

where definitionk, k = 1, . . . , p, is a particular bound definition.
Each bound definition must begin on a new line4 except the very first

bound definition which can begin on the same line as the keyword ‘bounds’.
Syntactically constraint definitions can have one of the following six

forms:

x >= l specifies a lower bound
l <= x specifies a lower bound
x <= u specifies an upper bound
l <= x <= u specifies both lower and upper bounds
x = t specifies a fixed value
x free specifies free variable

4The GLPK implementation allows several bound definitions to be placed on the same
line.
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where x is a symbolic name of a variable, l is a numeric constant with
an optional sign that defines a lower bound of the variable or -inf that
means that the variable has no lower bound, u is a numeric constant with
an optional sign that defines an upper bound of the variable or +inf that
means that the variable has no upper bound, t is a numeric constant with
an optional sign that defines a fixed value of the variable.

By default all variables are non-negative, i.e. have zero lower bound
and no upper bound. Therefore definitions of these default bounds can be
omitted in the bounds section.

Here is an example of the bounds section:

Bounds
-inf <= a1 <= 100
-100 <= a2
b <= 100
x2 = +123.456
x3 free

C.5 General, integer, and binary sections

The general, integer, and binary sections are intended to define some vari-
ables as integer or binary. All these sections are optional and needed only
in case of MIP problems. If they are specified, they must follow the bounds
section or, if the latter is omitted, the constraints section.

All the general, integer, and binary sections have the same form as fol-
lows:





general
integer
binary





x1

x2

. . .
xq

where xk is a symbolic name of variable, k = 1, . . . , q.
Each symbolic name must begin on a new line5 except the very first

symbolic name which can begin on the same line as the keyword ‘general’,
‘integer’, or ‘binary’.

5The GLPK implementation allows several symbolic names to be placed on the same
line.
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If a variable appears in the general or the integer section, it is assumed to
be general integer variable. If a variable appears in the binary section, it is
assumed to be binary variable, i.e. an integer variable whose lower bound is
zero and upper bound is one. (Note that if bounds of a variable are specified
in the bounds section and then the variable appears in the binary section,
its previously specified bounds are ignored.)

Here is an example of the integer section:

Integer
z12
z22
z35

C.6 End keyword

The keyword ‘end’ is intended to end the LP file. It must begin on a separate
line and no other elements (except comments and blank lines) must follow
it. Although this keyword is optional, it is strongly recommended to include
it in the LP file.

C.7 Example of CPLEX LP file

Here is a complete example of CPLEX LP file that corresponds to the ex-
ample given in Section B.11, page 192.

\* plan.lp *\

Minimize

value: .03 bin1 + .08 bin2 + .17 bin3 + .12 bin4 + .15 bin5 +

.21 alum + .38 silicon

Subject To

yield: bin1 + bin2 + bin3 + bin4 + bin5 +

alum + silicon = 2000

fe: .15 bin1 + .04 bin2 + .02 bin3 + .04 bin4 + .02 bin5 +

.01 alum + .03 silicon <= 60

cu: .03 bin1 + .05 bin2 + .08 bin3 + .02 bin4 + .06 bin5 +

.01 alum <= 100

mn: .02 bin1 + .04 bin2 + .01 bin3 + .02 bin4 + .02 bin5 <= 40
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mg: .02 bin1 + .03 bin2 + .01 bin5 <= 30

al: .70 bin1 + .75 bin2 + .80 bin3 + .75 bin4 + .80 bin5 +

.97 alum >= 1500

si1: .02 bin1 + .06 bin2 + .08 bin3 + .12 bin4 + .02 bin5 +

.01 alum + .97 silicon >= 250

si2: .02 bin1 + .06 bin2 + .08 bin3 + .12 bin4 + .02 bin5 +

.01 alum + .97 silicon <= 300

Bounds

bin1 <= 200

bin2 <= 2500

400 <= bin3 <= 800

100 <= bin4 <= 700

bin5 <= 1500

End

\* eof *\

206



Appendix D

Stand-alone LP/MIP Solver

The GLPK package includes the program glpsol which is a stand-alone
LP/MIP solver. This program can be invoked from the command line of
from the shell to read LP/MIP problem data in any format supported by
GLPK, solve the problem, and write the obtained problem solution to a text
file in plain format.

Usage

glpsol [options. . . ] [filename]

General options

--mps read LP/MIP problem in fixed MPS format
--freemps read LP/MIP problem in free MPS format (default)
--cpxlp read LP/MIP problem in CPLEX LP format
--math read LP/MIP model written in GNU MathProg mod-

eling language
-m filename, --model filename

read model section and optional data section from file-
name (the same as --math)

-d filename, --data filename
read data section from filename (for --math only); if
model file also has data section, that section is ignored

-y filename, --display filename
send display output to filename (for --math only); by
default the output is sent to stdout
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--min minimization
--max maximization
--scale scale problem (default)
--noscale do not scale problem
--simplex use simplex method (default)
--interior use interior point method (for pure LP only)
-o filename, --output filename

write solution to filename in plain text format
--bounds filename

write sensitivity bounds to filename in plain text format
(LP only)

--tmlim nnn limit solution time to nnn seconds (--tmlim 0 allows
obtaining solution at initial point)

--memlim nnn limit available memory to nnn Megabytes
--check do not solve problem, check input data only
--name probname change problem name to probname
--plain use plain names of rows and columns (default)
--orig try using original names of rows and columns
--wmps filename write problem to filename in fixed MPS format
--wfreemps filename

write problem to filename in free MPS format
--wcpxlp filename

write problem to filename in CPLEX LP format
--wtxt filename write problem to filename in plain text format
-h, --help display this help information and exit
-v, --version display program version and exit

LP basis factorization option

--luf LU + Forrest–Tomlin update
(faster, less stable; default)

--cbg LU + Schur complement + Bartels–Golub update
(slower, more stable)

--cbg LU + Schur complement + Givens rotation update
(slower, more stable)

Options specific to simplex method

--std use standard initial basis of all slacks
--adv use advanced initial basis (default)
--bib use Bixby’s initial basis
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--bas filename read initial basis from filename in MPS format
--steep use steepest edge technique (default)
--nosteep use standard “textbook” pricing
--relax use Harris’ two-pass ratio test (default)
--norelax use standard “textbook” ratio test
--presol use LP presolver (default; assumes --scale and --adv)
--nopresol do not use LP presolver
--exact use simplex method based on exact arithmetic
--xcheck check final basis using exact arithmetic
--wbas filename write final basis to filename in MPS format

Options specific to MIP

--nomip consider all integer variables as continuous (allows solv-
ing MIP as pure LP)

--first branch on first integer variable
--last branch on last integer variable
--drtom branch using heuristic by Driebeck and Tomlin (default)
--mostf branch on most fractional varaible
--dfs backtrack using depth first search
--bfs backtrack using breadth first search
--bestp backtrack using the best projection heuristic (default)
--bestb backtrack using node with best local bound
--intopt use advanced MIP solver (enables MIP presolving)
--binarize replace general integer variables by binary ones (as-

sumes --intopt)
--cover generate mixed cover cuts
--clique generate clique cuts
--gomory generate Gomory’s mixed integer cuts
--mir generate MIR (mixed integer rounding) cuts
--cuts generate cuts of all classes above (assumes --intopt)

For description of the MPS format see Appendix B, page 185.

For description of the CPLEX LP format see Appendix C, page 199.

For description of the modeling language see the document “Modeling Lan-
guage GNU MathProg: Language Reference” included in the GLPK distri-
bution.
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GNU General Public License

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other
kinds of works.

The licenses for most software and other practical works are designed to take away
your freedom to share and change the works. By contrast, the GNU General Public License
is intended to guarantee your freedom to share and change all versions of a program–to
make sure it remains free software for all its users. We, the Free Software Foundation,
use the GNU General Public License for most of our software; it applies also to any other
work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights
or asking you to surrender the rights. Therefore, you have certain responsibilities if you
distribute copies of the software, or if you modify it: responsibilities to respect the freedom
of others.

For example, if you distribute copies of such a program, whether gratis or for a fee,
you must pass on to the recipients the same freedoms that you received. You must make
sure that they, too, receive or can get the source code. And you must show them these
terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert
copyright on the software, and (2) offer you this License giving you legal permission to
copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.
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Some devices are designed to deny users access to install or run modified versions of
the software inside them, although the manufacturer can do so. This is fundamentally
incompatible with the aim of protecting users’ freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for individuals to use,
which is precisely where it is most unacceptable. Therefore, we have designed this version
of the GPL to prohibit the practice for those products. If such problems arise substantially
in other domains, we stand ready to extend this provision to those domains in future
versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers,
but in those that do, we wish to avoid the special danger that patents applied to a free
program could make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.
“Copyright” also means copyright-like laws that apply to other kinds of works, such

as semiconductor masks.
“The Program” refers to any copyrightable work licensed under this License. Each

licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or orga-
nizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the
Program.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public, and
in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to
make or receive copies. Mere interaction with a user through a computer network, with
no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that
it includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except to
the extent that warranties are provided), that licensees may convey the work under this
License, and how to view a copy of this License. If the interface presents a list of user
commands or options, such as a menu, a prominent item in the list meets this criterion.
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1. Source Code.

The “source code” for a work means the preferred form of the work for making mod-
ifications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular pro-
gramming language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work
as a whole, that (a) is included in the normal form of packaging a Major Component,
but which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”, in
this context, means a major essential component (kernel, window system, and so on) of
the specific operating system (if any) on which the executable work runs, or a compiler
used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source
code needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not include
the work’s System Libraries, or general-purpose tools or generally available free programs
which are used unmodified in performing those activities but which are not part of the
work. For example, Corresponding Source includes interface definition files associated
with source files for the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require, such as by intimate
data communication or control flow between those subprograms and other parts of the
work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License explic-
itly affirms your unlimited permission to run the unmodified Program. The output from
running a covered work is covered by this License only if the output, given its content,
constitutes a covered work. This License acknowledges your rights of fair use or other
equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively for
you, or provide you with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do not control copyright.
Those thus making or running the covered works for you must do so exclusively on your
behalf, under your direction and control, on terms that prohibit them from making any
copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.
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3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of
such measures.

When you convey a covered work, you waive any legal power to forbid circumvention
of technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention to
limit operation or modification of the work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License along
with the Program.

You may charge any price or no price for each copy that you convey, and you may
offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that you
also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b) The work must carry prominent notices stating that it is released under this License
and any conditions added under section 7. This requirement modifies the requirement in
section 4 to “keep intact all notices”.

c) You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any appli-
cable section 7 additional terms, to the whole of the work, and all its parts, regardless of
how they are packaged. This License gives no permission to license the work in any other
way, but it does not invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display Appropriate
Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined with
it such as to form a larger program, in or on a volume of a storage or distribution medium,
is called an “aggregate” if the compilation and its resulting copyright are not used to limit
the access or legal rights of the compilation’s users beyond what the individual works
permit. Inclusion of a covered work in an aggregate does not cause this License to apply
to the other parts of the aggregate.
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6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under the
terms of this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a durable
physical medium customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by a written offer, valid for at least three years and
valid for as long as you offer spare parts or customer support for that product model,
to give anyone who possesses the object code either (1) a copy of the Corresponding
Source for all the software in the product that is covered by this License, on a durable
physical medium customarily used for software interchange, for a price no more than your
reasonable cost of physically performing this conveying of source, or (2) access to copy
the Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally and non-
commercially, and only if you received the object code with such an offer, in accord with
subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a
charge), and offer equivalent access to the Corresponding Source in the same way through
the same place at no further charge. You need not require recipients to copy the Cor-
responding Source along with the object code. If the place to copy the object code is
a network server, the Corresponding Source may be on a different server (operated by
you or a third party) that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain obligated to ensure
that it is available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered to
the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object code
work.

A “User Product” is either (1) a “consumer product”, which means any tangible
personal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a typical
or common use of that class of product, regardless of the status of the particular user or
of the way in which the particular user actually uses, or expects or is expected to use,
the product. A product is a consumer product regardless of whether the product has
substantial commercial, industrial or non-consumer uses, unless such uses represent the
only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, au-
thorization keys, or other information required to install and execute modified versions of
a covered work in that User Product from a modified version of its Corresponding Source.
The information must suffice to ensure that the continued functioning of the modified
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object code is in no case prevented or interfered with solely because modification has been
made.

If you convey an object code work under this section in, or with, or specifically for use
in, a User Product, and the conveying occurs as part of a transaction in which the right of
possession and use of the User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the Corresponding Source
conveyed under this section must be accompanied by the Installation Information. But
this requirement does not apply if neither you nor any third party retains the ability to
install modified object code on the User Product (for example, the work has been installed
in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been modified
or installed. Access to a network may be denied when the modification itself materially
and adversely affects the operation of the network or violates the rules and protocols for
communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementation
available to the public in source code form), and must require no special password or key
for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by
making exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately under those per-
missions, but the entire Program remains governed by this License without regard to the
additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the work.)
You may place additional permissions on material, added by you to a covered work, for
which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement the
terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the original
version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e) Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or
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f) Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions of liability
to the recipient, for any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, contains
a notice stating that it is governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains a further restric-
tion but permits relicensing or conveying under this License, you may add to a covered
work material governed by the terms of that license document, provided that the further
restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in
the relevant source files, a statement of the additional terms that apply to those files, or
a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sepa-
rately written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under
this License. Any attempt otherwise to propagate or modify it is void, and will auto-
matically terminate your rights under this License (including any patent licenses granted
under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder ex-
plicitly and finally terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to 60 days after the
cessation.

Moreover, your license from a particular copyright holder is reinstated permanently
if the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, you do not qualify to receive new licenses for
the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.
However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance of
this License to do so.
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10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this License.
You are not responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program or
any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called the
contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of further
modification of the contributor version. For purposes of this definition, “control” includes
the right to grant patent sublicenses in a manner consistent with the requirements of this
License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or
commitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such a
patent license to a party means to make such an agreement or commitment not to enforce
a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily ac-
cessible means, then you must either (1) cause the Corresponding Source to be so available,
or (2) arrange to deprive yourself of the benefit of the patent license for this particular
work, or (3) arrange, in a manner consistent with the requirements of this License, to
extend the patent license to downstream recipients. “Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the covered work in a
country, or your recipient’s use of the covered work in a country, would infringe one or
more identifiable patents in that country that you have reason to believe are valid.
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If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant is
automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its
coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of
the rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants, to
any of the parties who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by you (or copies
made from those copies), or (b) primarily for and in connection with specific products or
compilations that contain the covered work, unless you entered into that arrangement, or
that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license
or other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence
you may not convey it at all. For example, if you agree to terms that obligate you to
collect a royalty for further conveying from those to whom you convey the Program, the
only way you could satisfy both those terms and this License would be to refrain entirely
from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero General
Public License into a single combined work, and to convey the resulting work. The terms
of this License will continue to apply to the part which is the covered work, but the special
requirements of the GNU Affero General Public License, section 13, concerning interaction
through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation. If
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the Program does not specify a version number of the GNU General Public License, you
may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING
THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PRO-
GRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LI-
ABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be
given local legal effect according to their terms, reviewing courts shall apply local law
that most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

END OF TERMS AND CONDITIONS
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How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them
to the start of each source file to most effectively state the exclusion of warranty; and
each file should have at least the “copyright” line and a pointer to where the full notice is
found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short notice like this when

it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for
a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it more
useful to permit linking proprietary applications with the library. If this is what you want
to do, use the GNU Lesser General Public License instead of this License. But first, please
read <http://www.gnu.org/philosophy/why-not-lgpl.html>.
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