An Introduction to
Binary Search Trees and Balanced Trees

LiBAVL Binary Search Tree Library
Volume 1: Source Code
Version 2.0.2

by Ben Pfaff

Copyright (©) 1998-2002, 2004 Free Software Foundation, Inc.

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to:

Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307
UNITED STATES

The author may be contacted as blp@gnu.org on the Internet, or write to:

Ben Pfaff

Stanford University
Computer Science Dept.
353 Serra Mall

Stanford CA 94305
UNITED STATES

Brief Contents

Preface « o oo v v oot e e i it i i 1
1 Introduction.......eeeeeeeeeeeesoesessoesaeseas 3
2 TheTable ADT + vttt ittt eieneessiieessseennnnsns 7
3 Search Algorithms vvvv e v ineenn. 19
4 DBinary Search Trees. . ..o oo v e en e eennns 29
B AVL Trees ¢ v v v e v e eeeeeesossesoessesonaeses 107
6 Red-Black Trees v v oo v v v oo vvvvoseoesseoasocoess 139
7 Threaded Binary Search Trees.....veeeeeeeeennennn 163
8 Threaded AVL Trees « v v v v oo v v v vveseeeesosnsnnas 191
9 Threaded Red-Black Trees « oo v v v v v v v v veeeeeenss 209
10 Right-Threaded Binary Search Trees0veeun... 225
11 Right-Threaded AVL Trees ¢ o v v v v oo v vvveveoennens 247
12 Right-Threaded Red-Black Trees « v v v v v v v v v v v v v nn 263
13 BSTs with Parent Pointers « v o v v v v v v v v v e v v veenens 277
14 AVL Trees with Parent Pointers. « « o v v o v v v v v v v v vvvnn 293
15 Red-Black Trees with Parent Pointers................ 307
A References . .o ov v v ittt ensnns 321
B Supplementary Code « oo v v v v v vvveeeeeesssooeeees 323
O) - 331
D Answers to All the Exercises « o v v v v v v v v eeeeeeeeeens 335
E Catalogue of Algorithms . . o oo v v v e e e i, 405
FoIndex.oeeeooeeeeoeeeooeeoooesssoesssooonsss 411

11

GNU libavl 2.0.2

Table of Contents

Preface...........ciii i, 1
Acknowledgements 1
Contacting the Author 2

1 Introduction............................... 3
11 Audienceiinii 3
1.2 Readingthe Code........ i 4
1.3 Code Conventionsovuieineinennennnnn... 6
1.4 LACENSE . . oot 6

2 The Table ADTccnn... 7
2.1 Informal Definition............ 7
2.2 Identifiers. 8
2.3 Comparison Function........... 8
2.4 Ttem and Copy Functions 10
2.5 Memory Allocation................couiiiineiiinea ... 11
2.6 Creation and Destruction 12
2.7 CoUunt ...t 13
2.8 Insertion and Deletion.................................. 13
2.9 ASSErtionsooiii 14
2.10 TraverSersSovt e 15

2.10.1 Constructors.............cooviineieenn.... 15
2.10.2 Manipulators.............. .. 16
2.11 Table Headers, 17
2.12 Additional Exercises.ooiiiiiiii 18

3 Search Algorithms........................ 19
3.1 Sequential Search 19
3.2 Sequential Search with Sentinel.......................... 20
3.3 Sequential Search of Ordered Array...................... 21
3.4 Sequential Search of Ordered Array with Sentinel......... 22
3.5 Binary Search of Ordered Array 23
3.6 Binary Search Tree in Array 25
3.7 Dynamic Lists 27

iii

iv GNU libavl 2.0.2

4 Binary Search Trees 29
4.1 Vocabulary 29
4.1.1 Aside: Differing Definitions..................... 30

4.2 DataTypes.o 31
4.2.1 Node Structure...................ooiie. ... 31

4.2.2 Tree Structure................cvviiieinnn... 32

4.2.3 Maximum Height 32

4.3 Rotations.......... ... 33
4.4 Operationsee et 34
4.5 Creation. 34
4.6 Search..........iiii 35
47 InSertiont 35
4.7.1 Aside: Root Insertion.......................... 37

4.8 Deletiono 39
4.8.1 Aside: Deletion by Merging 42

4.9 Traversal ... 45
4.9.1 Traversal by Recursion......................... 46

4.9.2 Traversal by Iteration.......................... 47

4.9.2.1 Improving Convenience................ 50

4.9.3 Better Iterative Traversal....................... 53

4.9.3.1 Starting at the Null Node.............. 55

4.9.3.2 Starting at the First Node 55

4.9.3.3 Starting at the Last Node 56

4.9.3.4 Starting at a Found Node.............. 56

4.9.3.5 Starting at an Inserted Node........... 57

4.9.3.6 Initialization by Copying 58

4.9.3.7 Advancing to the Next Node........... 58

4.9.3.8 Backing Up to the Previous Node 60

4.9.3.9 Getting the Current Item.............. 61

4.9.3.10 Replacing the Current Item........... 61

410 COPYING .« v o e ettt e e 61
4.10.1 Recursive Copying.............cooeiiinna.... 61

4.10.2 Tterative Copying..........oovveivieniian... 63

4.10.3 Error Handling 64

4.11 Destruction............oiim i 67
4.11.1 Destruction by Rotation 67

4.11.2 Aside: Recursive Destruction.................. 68

4.11.3 Aside: Iterative Destruction................... 69

4.12 Balance i 70
4.12.1 From Treeto Vine............................ 72

4.12.2 From Vine to Balanced Tree................... 73
4.12.2.1 General Trees........................ 74

4.12.2.2 TImplementation...................... 75

4.12.2.3 Implementing Compression 77

4.13 Aside: Joining BSTS 78
414 Testingot 80
4.14.1 Testing BSTs. ... 83

4.14.1.1 BST Verification 88

4.14.1.2 Displaying BST Structures............ 92

4.14.2 Test Set Generation 93

4.14.3 Testing Overflow 94

4.14.4 Memory Manager................cooviin... 95

4.14.5 User Interaction............................. 101

4.14.6 Utility Functions 102

4.14.7 Main Program 103

4.15 Additional Exercises.ouiiiiiiiii . 105
5 AVL Treesccviiiiiiinnnnnnnnns 107
5.1 Balancing Rule....... 108
51.1 Analysis...... ..o 109

5.2 Data Types.oounii 109
5.3 Operationsooiine i 109
5.4 Inmsertion 110
54.1 Step 1l: Search.................. ..., 111

5.4.2 Step 2: Inmsert 112

5.4.3 Step 3: Update Balance Factors 112

5.4.4 Step 4: Rebalance 115

5.4.5 Symmetric Case............cooiiiiiiii... 118

54.6 Example......... 118

5.4.7 Aside: Recursive Insertion..................... 119

5.5 Deletion. .. .o 122
55.1 Step 1l: Search............ 122

5.5.2 Step2: Delete.............o i 123

5.5.3 Step 3: Update Balance Factors 125

5.5.4 Step 4: Rebalance 127

5.5.5 Step 5: Finish Up, 128

5.5.6 Symmetric Case............ 129

5.6 Traversal 129
D7 COPYIIIE - e v vttt e e e 133
5.8 Testingo 135
6 Red-Black Trees......................... 139
6.1 Balancing Rule......... 139
6.1.1 Analysis ... 141

6.2 Data Types.o 141
6.3 Operationsooiuemiin e 142
6.4 Insertiono 142
6.4.1 Step 1: Search............. 143

6.4.2 Step 2: Inmsert i 143

6.4.3 Step 3: Rebalance 143

6.4.4 Symmetric Case............ooiiiiiiiiii., 146

6.4.5 Aside: Initial Black Insertion.................. 147

6.4.5.1 Symmetric Case 150

6.5 Deletion..... ... 150
6.5.1 Step 2: Delete...............iiiiii. 151

6.5.2 Step 3: Rebalance 154

vi GNU libavl 2.0.2

6.5.3 Step4: Finish Up 158

6.5.4 Symmetric Case................ ... 158

6.6 Testing.......c.ooouniimi 159
7 Threaded Binary Search Trees............ 163
7.1 Threadso 163
7.2 Data Types. ...counii 164
7.3 Operationsuiiiin i 165
T4 Creation.covueine et 166
7.5 Search...... ... oo 166
7.6 Insertiono i 167
77 Deletion. 168
7.8 Traversal 173
7.8.1 Starting at the Null Node 174

7.8.2 Starting at the First Node..................... 174

7.8.3 Starting at the Last Node 175

7.8.4 Starting at a Found Node 175

7.8.5 Starting at an Inserted Node 176

7.8.6 Initialization by Copying...................... 176

7.8.7 Advancing to the Next Node 176

7.8.8 Backing Up to the Previous Node.............. 177

7.9 COPYING . o v 177
7.10 Destruction.iiiii .. 181
711 Balance oo 182
7.11.1 From Treeto Vine............. 182

7.11.2 From Vine to Balanced Tree.................. 184

712 Testing.....cooovi e 186
8 Threaded AVL Trees..................... 191
8.1 Data Types....covuniinii 191
8.2 Rotations......... ..o 192
8.3 Operationscoiuiii 193
8.4 Insertiono 193
8.4.1 Steps 1 and 2: Search and Insert............... 193

8.4.2 Step 4: Rebalance, 194

8.4.3 Symmetric Case.............. ... 196

8.5 Deletion..... ..o 197
85.1 Step l: Search............. 197

8.5.2 Step 2: Delete............ i 198

8.5.3 Step 3: Update Balance Factors 199

8.5.4 Step 4: Rebalance 200

8.5.5 Symmetric Casecciiiiiiiii... 202

8.5.6 Finding the Parent of a Node.................. 203

8.6 COPYING . oo vttt 204

8.7 Testing.....ovvmniini e 205

9 Threaded Red-Black Trees 209
9.1 Data Types.....oouiiii i 209
9.2 Operationscoiuiiie 210
9.3 Imsertion 210

9.3.1 Steps 1 and 2: Search and Insert............... 211
9.3.2 Step 3: Rebalance 211
9.3.3 Symmetric Case............c. ... 213
9.4 Deletion.o 214
9.4.1 Stepl: Search............. 215
9.4.2 Step 2: Delete............ i 215
9.4.3 Step 3: Rebalance 217
94.4 Step4: Finish Up 220
9.4.5 Symmetric Caseccuiiiiiiiiaai... 220
9.5 Testingt 221

10 Right-Threaded Binary Search Trees..... 225
10.1 Data Types. ..o 226
10.2 Operationsuveein e 226
10.3 Search oo 227
104 Insertion i, 227
105 Deletion. ... 229

10.5.1 Right-Looking Deletion 230
10.5.2 Left-Looking Deletion........................ 232
10.5.3 Aside: Comparison of Deletion Algorithms 235
10.6 Traversalc. i 236
10.6.1 Starting at the First Node.................... 236
10.6.2 Starting at the Last Node.................... 237
10.6.3 Starting at a Found Node 237
10.6.4 Advancing to the Next Node 238
10.6.5 Backing Up to the Previous Node............. 238
10.7 COPYING - o oottt e 240
10.8 Destruction.............ii 242
10.9 Balance 243

10.10 Testing......coiini e

vii

viii GNU libavl 2.0.2

11 Right-Threaded AVL Trees.............. 247
11.1 Data Types. . ..o 247
11.2 Operations ... 248
11.3 Rotations..............oiiii i 248
11.4 Insertion i, 249

11.4.1 Steps 1-2: Search and Insert 249
11.4.2 Step 4: Rebalance 250
115 Deletion. ... 253
11.5.1 Step 1: Search 253
11.5.2 Step 2: Delete. ..., 254
11.5.3 Step 3: Update Balance Factors 256
11.5.4 Step 4: Rebalance 257
11.6 COPYINE « v v vt e e e e 259
11.7 Testingttt e 260

12 Right-Threaded Red-Black Trees........ 263
12.1 Data Types. ..o 263
12.2 Operationsuriin e 264
12.3 Imsertion 264

12.3.1 Steps 1 and 2: Search and Insert.............. 265
12.3.2 Step 3: Rebalance 266
124 Deletion 269
12.4.1 Step 2: Delete. ... 269
12.4.2 Step 3: Rebalance 271
12.4.3 Step 4: Finish Up 274
12,5 Testing 274

13 BSTs with Parent Pointers.............. 277
13.1 Data Types.....oovoin 278
13.2 Operationscouiine 278
13.3 Insertion i, 279
13.4 Deletion. ... 280
13.5 Traversaloooii 283

13.5.1 Starting at the First Node.................... 283
13.5.2 Starting at the Last Node 283
13.5.3 Starting at a Found Node 284
13.5.4 Starting at an Inserted Node 284
13.5.5 Advancing to the Next Node 285
13.5.6 Backing Up to the Previous Node............. 286
13.6 COPYING . o o v vve ettt e e 287
13.7 Balance 289

13.8 Testingt 290

14 AVL Trees with Parent Pointers......... 293
14.1 Data Types. . ..o 293
14.2 Rotations............ooo i, 294
14.3 Operationsoeiimee e 294
14.4 Insertioniiiii .. 294

14.4.1 Steps 1 and 2: Search and Insert.............. 295
14.4.2 Step 3: Update Balance Factors 295
14.4.3 Step 4: Rebalance 296
14.4.4 Symmetric Case ... 298
14.5 Deletion.. ... 298
14.5.1 Step 2: Delete...........o i 299
14.5.2 Step 3: Update Balance Factors 300
14.5.3 Step 4: Rebalance 300
14.5.4 Symmetric Case ... 301
14.6 Traversal 302
14.7 COPYINE - o oo vttt 302
14.8 Testingo 304

15 Red-Black Trees with Parent Pointers ... 307

15.1 Data Types... ..o 307

15.2 Operationsoueiiine 308

15.3 Imsertiono 308

15.3.1 Step 2: Imsert, 308

15.3.2 Step 3: Rebalance 309

15.3.3 Symmetric Case................ i 311

154 Deletion. 312

15.4.1 Step 2: Delete. ... 313

15.4.2 Step 3: Rebalance 314

1543 Step4: Finish Up 317

15.4.4 Symmetric Case ... 317

15,5 Testing . ..o 318
Appendix A References.................... 321
Appendix B Supplementary Code 323
B.1 Option Parser............... i 323

B.2 Command-Line Parser 326

Appendix C Glossary...........ovvvnn... 331

ix

X GNU libavl 2.0.2
Appendix D Answers to All the Exercises... 335

Chapter 2 335
Chapter 3 ... 341
Chapter 4 351
Chapter 5 374
Chapter 6ot 379
Chapter 7 ... 381
Chapter 8 384
Chapter 9 390
Chapter 10o 397
Chapter 11 398
Chapter 13o 401
Chapter 14 402
Appendix E Catalogue of Algorithms....... 405
Binary Search Tree Algorithms.............................. 405
AVL Tree Algorithms 406
Red-Black Tree Algorithms 406
Threaded Binary Search Tree Algorithms.................... 407
Threaded AVL Tree Algorithms................. 407
Threaded Red-Black Tree Algorithms........................ 407
Right-Threaded Binary Search Tree Algorithms 408
Right-Threaded AVL Tree Algorithms....................... 408
Right-Threaded Red-Black Tree Algorithms.................. 408
Binary Search Tree with Parent Pointers Algorithms.......... 408
AVL Tree with Parent Pointers Algorithms 409
Red-Black Tree with Parent Pointers Algorithms 409

Appendix F Index......................... 411

Preface 1

Preface

Early in 1998, T wanted an AVL tree library for use in writing GNU PSPP. At the time,
few of these were available on the Internet. Those that were had licenses that were not
entirely satisfactory for inclusion in GNU software. I resolved to write my own. I sat down
with Knuth’s The Art of Computer Programming and did so. The result was the earliest
version of LIBAVL. As I wrote it, I learned valuable lessons about implementing algorithms
for binary search trees, and covered many notebook pages with scribbled diagrams.

Later, I decided that what I really wanted was a similar library for threaded AVL trees,
so I added an implementation to LIBAVL. Along the way, I ended up having to relearn
many of the lessons I'd already painstakingly uncovered in my earlier work. Even later, I
had much the same experience in writing code for right-threaded AVL trees and red-black
trees, which was done as much for my own education as any intention of using the code in
real software.

In late 1999, T contributed a chapter on binary search trees and balanced trees to a
book on programming in C. This again required a good deal of duplication of effort as I
rediscovered old techniques. By now I was beginning to see the pattern, so I decided to
document once and for all the algorithms I had chosen and the tradeoffs I had made. Along
the way, the project expanded in scope several times.

You are looking at the results. I hope you find that it is as useful for reading and reference
as I found that writing it was enjoyable for me. As I wrote later chapters, I referred less
and less to my other reference books and more and more to my own earlier chapters, so I
already know that it can come in handy for me.

Please feel free to copy and distribute this book, in accordance with the license agree-
ment. If you make multiple printed copies, consider contacting me by email first to check
whether there are any late-breaking corrections or new editions in the pipeline.

Acknowledgements

LiBAVL has grown into its current state over a period of years. During that time,
many people have contributed advice, bug reports, and occasional code fragments. I have
attempted to individually acknowledge all of these people, along with their contributions,
in the ‘NEWS’ and ‘ChangeLog’ files included with the LIBAVL source distribution. Without
their help, LIBAVL would not be what it is today. If you believe that you should be listed
in one of these files, but are not, please contact me.

Many people have indirectly contributed by providing computer science background and
software infrastructure, without which LIBAVL would not have been possible at all. For a
partial list, please see ‘THANKS’ in the LIBAVL source distribution.

Special thanks are due to Erik Goodman of the A. H. Case Center for Computer-Aided
Engineering and Manufacturing at Michigan State University for making it possible for me
to receive MSU honors credit for rewriting LIBAVL as a literate program, and to Dann
Corbit for his invaluable suggestions during development.

2 GNU libavl 2.0.2

Contacting the Author

LiBAVL, including this book, the source code, the TexiWEB software, and related pro-
grams, was written by Ben Pfaff, who welcomes your feedback. Please send LIBAVL-
related correspondence, including bug reports and suggestions for improvement, to him
at blp@gnu.org.

Ben received his B.S. in electrical engineering from Michigan State University in May
2001. He is now studying for a Ph.D. in computer science at Stanford University as a
Stanford Graduate Fellow.

Ben’s personal webpage is at http://benpfaff.org/, where you can find a list of his
current projects, including the status of LIBAVL test releases. You can also find him hanging
out in the Internet newsgroup comp.lang.c.

Chapter 1: Introduction 3

1 Introduction

LiBAVL is a library in ANSI C for manipulation of various types of binary trees. This

book provides an introduction to binary tree techniques and presents all of LIBAVL’s source
code, along with annotations and exercises for the reader. It also includes practical infor-
mation on how to use LIBAVL in your programs and discussion of the larger issues of how
to choose efficient data structures and libraries. The book concludes with suggestions for
further reading, answers to all the exercises, glossary, and index.

1.1 Audience

This book is intended both for novices interested in finding out about binary search trees

and practicing programmers looking for a cookbook of algorithms. It has several features
that will be appreciated by both groups:

Tested code: With the exception of code presented as counterexamples, which are
clearly marked, all code presented has been tested. Most code comes with a working
program for testing or demonstrating it.

No pseudo-code: Pseudo-code can be confusing, so it is not used.

Motivation: An important goal is to demonstrate general methods for programming,
not just the particular algorithms being examined. As a result, the rationale for design
choices is explained carefully.

Ezxercises and answers: To clarify issues raised within the text, many sections conclude
with exercises. All exercises come with complete answers in an appendix at the back
of the book.

Some exercises are marked with one or more stars (*). Exercises without stars are
recommended for all readers, but starred exercises deal with particularly obscure topics
or make reference to topics covered later.

Experienced programmers should find the exercises particularly interesting, because
many of them present alternatives to choices made in the main text.

Asides: Occasionally a section is marked as an “aside”. Like exercises, asides often
highlight alternatives to techniques in the main text, but asides are more extensive
than most exercises. Asides are not essential to comprehension of the main text, so
readers not interested may safely skip over them to the following section.

Minimal C knowledge assumed: Basic familiarity with the C language is assumed, but
obscure constructions are briefly explained the first time they occur.

Those who wish for a review of C language features before beginning should consult
[Summit 1999]. This is especially recommended for novices who feel uncomfortable
with pointer and array concepts.

References: When appropriate, other texts that cover the same or related material are
referenced at the end of sections.

Glossary: Terms are emphasized and defined the first time they are used. Definitions
for these terms and more are collected into a glossary at the back of the book.

Catalogue of algorithms: See Appendix E [Catalogue of Algorithms], page 405, for a
handy list of all the algorithms implemented in this book.

§19

4 GNU libavl 2.0.2

1.2 Reading the Code

This book contains all the source code to LIBAVL. Conversely, much of the source code
presented in this book is part of LIBAVL.

L1BAVL is written in ANSI/ISO C89 using TexiWEB, a literate programming system.
Literate programming is a philosophy that regards software as a kind of literature. The
ideas behind literate programming have been around for a long time, but the term itself was
invented by computer scientist Donald Knuth in 1984, who wrote two of his most famous
programs (TEX and METAFONT) with a literate programming system of his own design.
That system, called WEB, inspired the form and much of the syntax of TexiWEB.

A TexiWEB document is a C program that has been cut into sections, rearranged, and
annotated, with the goal to make the program as a whole as comprehensible as possible
to a reader who starts at the beginning and reads the entire program in order. Of course,
understanding large, complex programs cannot be trivial, but TexiWEB tries to make it as
easy as possible.

Each section of a TexiWEB program is assigned both a number and a name. Section
numbers are assigned sequentially, starting from 1 with the first section, and they are used
for cross-references between sections. Section names are words or phrases assigned by the
TexiWEB program’s author to describe the role of the section’s code.

Here’s a sample TexiWEB section:

(Clear hash table entries 19) =
for (i = 0; ¢ < hash—m; i++)
hash—entry|[i] = NULL;

This code is included in §15.

The first line of a section, as shown here, gives the section’s name and its number within
angle brackets. The section number is also printed in the left margin to make individual
sections easy to find. Looking farther down, at the code itself, the C operator -> has been
replaced by the nicer-looking arrow —. TexiWEB makes an attempt to “prettify” C in a
few ways like this. The table below lists most of these substitutions:

-> becomes —
0x12ab becomes Ox12ab
0377 becomes 0377
1.2e34 becomes 1.2-10%

In addition, — and + are written as superscripts when used to indicate sign, as in =5 or
+10.

In TexiWEB, C’s reserved words are shown like this: int, struct, while. . .. Types defined
with typedef or with struct, union, and enum tags are shown the same way. Identifiers in
all capital letters (often names of macros) are shown like this: BUFSIZ, EOF, ERANGE. . ..
Other identifiers are shown like this: gete, argv, strien. . ..

Sometimes it is desirable to talk about mathematical expressions, as opposed to C expres-
sions. When this is done, mathematical operators (<, >) instead of C operators (<=, >=)
are used. In particular, mathematical equality is indicated with = instead of = in order to
minimize potential confusion.

§15

§16

Chapter 1: Introduction 5

Code segments often contain references to other code segments, shown as a section name
and number within angle brackets. These act something like macros, in that they stand for
the corresponding replacement text. For instance, consider the following segment:

(Initialize hash table 15) =
hash—m = 13;
(Clear hash table entries 19)

See also §16.

This means that the code for ‘Clear hash table entries’ should be inserted as part of
‘Initialize hash table’. Because the name of a section explains what it does, it’s often
unnecessary to know anything more. If you do want more detail, the section number 19 in
(Clear hash table entries 19) can easily be used to find the full text and annotations for
‘Clear hash table entries’. At the bottom of section 19 you will find a note reading ‘This
code is included in §15.”, making it easy to move back to section 15 that includes it.

There’s also a note following the code in the section above: ‘See also §16.”. This demon-
strates how TexiWEB handles multiple sections that have the same name. When a name
that corresponds to multiple sections is referenced, code from all the sections with that
name is substituted, in order of appearance. The first section with the name ends with a
note listing the numbers of all other same-named sections. Later sections show their own
numbers in the left margin, but the number of the first section within angle brackets, to
make the first section easy to find. For example, here’s another line of code for (Clear hash
table entries 15):

(Initialize hash table 15) +=
hash—n = 0;

Code segment references have one more feature: the ability to do special macro replace-
ments within the referenced code. These replacements are made on all words within the
code segment referenced and recursively within code segments that the segment references,
and so on. Word prefixes as well as full words are replaced, as are even occurrences within
comments in the referenced code. Replacements take place regardless of case, and the case
of the replacement mirrors the case of the replaced text. This odd feature is useful for
adapting a section of code written for one library having a particular identifier prefix for
use in a different library with another identifier prefix. For instance, the reference ‘(BST
types; bst = avl)’ inserts the contents of the segment named ‘BST types’, replacing ‘bst’
by ‘avl’ wherever the former appears at the beginning of a word.

When a TexiWEB program is converted to C, conversion conceptually begins from sec-
tions named for files; e.g., (‘foo.c’ 37). Within these sections, all section references are
expanded, then references within those sections are expanded, and so on. When expansion
is complete, the specified files are written out.

A final resource in reading a TexiWEB is the index, which contains an entry for the points
of declaration of every section name, function, type, structure, union, global variable, and
macro. Declarations within functions are not indexed.

See also: [Knuth 1992], “How to read a WEB”.

§1

6 GNU libavl 2.0.2

1.3 Code Conventions

Where possible, the LIBAVL source code complies to the requirements imposed by
ANSI/ISO C89 and C99. Features present only in C99 are not used. In addition, most of
the GNU Coding Standards are followed. Indentation style is an exception to the latter:
in print, to conserve vertical space, K&R indentation style is used instead of GNU style.

See also: [ISO 1990]; [ISO 1999]; [FSF 2001], “Writing C”.

1.4 License

This book, including the code in it, is subject to the following license:
(License 1) =
/* GNU LIBAVL - library for manipulation of binary trees.

Copyright (© 1998-2002, 2004 Free Software Foundation, Inc.

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

The author may be contacted at <blp@gnu.org> on the Internet, or

write to Ben Pfaff, Stanford University, Computer Science Dept., 353

Serra Mall, Stanford CA 94305, USA.

*/
This code is included in §24, §25, §97, §98, §99, §142, §143, §186, §192, §193, §238, §247, §248, §290, §297,
§298, §330, §333, §334, §368, §372, §373, §411, §415, §416, §449, §452, §453, §482, 8486, §487, §515, §519,
8520, §548, §551, §552, 8583, §595, §599, §617, and §649.

Chapter 2: The Table ADT 7

2 The Table ADT

Most of the chapters in this book implement a table structure as some kind of binary
tree, so it is important to understand what a table is before we begin. That is this chapter’s
purpose.

This chapter begins with a brief definition of the meaning of “table” for the purposes
of this book, then moves on to describe in a more formal way the interface of a table used
by all of the tables in this book. The next chapter motivates the basic idea of a binary
tree starting from simple, everyday concepts. Experienced programmers may skip these
chapters after skimming through the definitions below.

2.1 Informal Definition

If you’ve written even a few programs, you’'ve probably noticed the necessity for search-
able collections of data. Compilers search their symbol tables for identifiers and network
servers often search tables to match up data with users. Many applications with graphical
user interfaces deal with mouse and keyboard activity by searching a table of possible ac-
tions. In fact, just about every nontrivial program, regardless of application domain, needs
to maintain and search tables of some kind.

In this book, the term “table” does not refer to any particular data structure. Rather,
it is the name for a abstract data structure or ADT, defined in terms of the operations that
can be performed on it. A table ADT can be implemented in any number of ways. Later
chapters will show how to implement tables in terms of various binary tree data structures.

The purpose of a table is to keep track of a collection of items, all of the same type.
Items can be inserted into and deleted from a table, with no arbitrary limit on the number
of items in the table. We can also search a table for items that match a given item.

Other operations are supported, too. Traversal is the most important of these: all of
the items in a table can be visited, in sorted order from smallest to largest, or from largest
to smallest. Traversals can also start from an item in the middle, or a newly inserted item,
and move in either direction.

The data in a table may be of any C type, but all the items in a table must be of the
same type. Structure types are common. Often, only part of each data item is used in item
lookup, with the rest for storage of auxiliary information. A table that contains two-part
data items like this is called a “dictionary” or an “associative array”. The part of table
data used for lookup, whether the table is a dictionary or not, is the key. In a dictionary,
the remainder is the value.

Our tables cannot contain duplicates. An attempt to insert an item into a table that
already contains a matching item will fail.

Exercises:

1. Suggest a way to simulate the ability to insert duplicate items in a table.

8 GNU libavl 2.0.2

2.2 Identifiers

In C programming it is necessary to be careful if we expect to avoid clashes between
our own names and those used by others. Any identifiers that we pick might also be used
by others. The usual solution is to adopt a prefix that is applied to the beginning of
every identifier that can be visible in code outside a single source file. In particular, most
identifiers in a library’s public header files must be prefixed.

LiBAVL is a collection of mostly independent modules, each of which implements the
table ADT. Each module has its own, different identifier prefix. Identifiers that begin with
this prefix are reserved for any use in source files that #include the module header file. Also
reserved (for use as macro names) are identifiers that begin with the all-uppercase version
of the prefix. Both sets of identifiers are also reserved as external names! throughout any
program that uses the module.

In addition, all identifiers that begin with libavl_ or LIBAVL_ are reserved for any use in
source files that #include any LIBAVL module. Likewise, these identifiers are reserved as
external names in any program that uses any LIBAVL module. This is primarily to allow
for future expansion, but see Section 2.5 [Memory Allocation], page 11 and Exercise 2.5-1
for a sample use.

The prefix used in code samples in this chapter is tbl_, short for “table”. This can be
considered a generic substitute for the prefix used by any of the table implementation. All of
the statements about these functions here apply equally to all of the table implementation
in later chapters, except that the tbl_ prefix must be replaced by the prefix used by the
chapter’s table implementation.

Exercises:
1. The following kinds of identifiers are among those that might appear in a header file.
Which of them can be safely appear unprefixed? Why?

a. Parameter names within function prototypes.

b. Macro parameter names.
c. Structure and union tags.
d.

Structure and union member names.

2. Suppose that we create a module for reporting errors. Why is err_ a poorly chosen prefix
for the module’s identifiers?

2.3 Comparison Function

The C language provides the void * generic pointer for dealing with data of unknown
type. We will use this type to allow our tables to contain a wide range of data types. This
flexibility does keep the table from working directly with its data. Instead, the table’s user
must provide means to operate on data items. This section describes the user-provided
functions for comparing items, and the next section describes two other kinds of user-
provided functions.

I External names are identifiers visible outside a single source file. These are, mainly, non-static functions
and variables declared outside a function.

§2

3

Chapter 2: The Table ADT 9

There is more than one kind of generic algorithm for searching. We can search by
comparison of keys, by digital properties of the keys, or by computing a function of the keys.
In this book, we are only interested in the first possibility, so we need a way to compare
data items. This is done with a user-provided function compatible with tbl_comparison_func,
declared as follows:

(Table function types 2) =
/* Function types. %/
typedef int tbl_comparison_func (const void *tbl_a, const void *tbl_b, void *tbl_param);

See also §4.
This code is included in §14.

A comparison function takes two pointers to data items, here called a and b, and com-
pares their keys. It returns a negative value if a < b, zero if a == b, or a positive value if
a > b. It takes a third parameter, here called param, which is user-provided.

A comparison function must work more or less like an arithmetic comparison within the
domain of the data. This could be alphabetical ordering for strings, a set of nested sort
orders (e.g., sort first by last name, with duplicates by first name), or any other comparison
function that behaves in a “natural” way. A comparison function in the exact class of
those acceptable is called a strict weak ordering, for which the exact rules are explained in
Exercise 5.

Here’s a function that can be used as a comparison function for the case that the void *

pointers point to single ints:
(Comparison function for ints 3) =
/* Comparison function for pointers to ints. param is not used. */
int compare_ints (const void *pa, const void *pb, void xparam) {

const int xa = pa;

const int xb = pb;

if (xa < *b) return ~1;

else if (xa > *b) return *1;

else return 0;

}

This code is included in §134.
Here’s another comparison function for data items that point to ordinary C strings:

/* Comparison function for strings. param is not used. */

int compare_strings (const void *pa, const void xpb, void xparam) {
return stremp (pa, pb);

}

See also: [FSF 1999], node “Defining the Comparison Function”; [ISO 1998], section 25.3,
“Sorting and related operations”; [SGI 1993], section “Strict Weak Ordering”.

Exercises:

1. In C, integers may be cast to pointers, including veid %, and vice versa. Explain why
it is not a good idea to use an integer cast to void * as a data item. When would such a
technique would be acceptable?

2. When would the following be an acceptable alternate definition for compare_ints()?

§4

10 GNU libavl 2.0.2

int compare_ints (const void *pa, const void *pb, void *param) {
return x((int *) pa) — *((int %) pb);
}

3. Could stremp(), suitably cast, be used in place of compare_strings()?

4. Write a comparison function for data items that, in any particular table, are character
arrays of fixed length. Among different tables, the length may differ, so the third parameter
to the function points to a size_t specifying the length for a given table.

*5. For a comparison function f() to be a strict weak ordering, the following must hold for
all possible data items a, b, and c:

o Irreflexivity: For every a, f(a, a) == 0.

o Antisymmetry: If f(a, b) > 0, then f(b, a) < 0.

o Transitivity: If f(a, b) > 0 and f(b, ¢) > 0, then f(a, ¢) > 0.

o Transitivity of equivalence: If f(a, b) == 0 and f(b, ¢) == 0, then f(a, ¢) == 0.
Consider the following questions that explore the definition of a strict weak ordering.

a. Explain how compare_ints() above satisfies each point of the definition.

b. Can the standard C library function stremp() be used for a strict weak ordering?

c. Propose an irreflexive, antisymmetric, transitive function that lacks transitivity of
equivalence.

*6. LIBAVL uses a ternary comparison function that returns a negative value for <, zero for
=, positive for >. Other libraries use binary comparison functions that return nonzero for
< or zero for >. Consider these questions about the differences:

a. Write a C expression, in terms of a binary comparison function f() and two items a and
b, that is nonzero if and only if @ == b as defined by f(). Write a similar expression
for a > b.

b. Write a binary comparison function “wrapper” for a LIBAVL comparison function.

c. Rewrite bst_find() based on a binary comparison function. (You can use the wrapper
from above to simulate a binary comparison function.)

2.4 Item and Copy Functions

Besides tbl_comparison_func, there are two kinds of functions used in LIBAVL to manip-
ulate item data:

(Table function types 2) +=
typedef void tbl item_func (void xtbl_item, void *tbl_param);
typedef void *tbl_copy_func (void xtbl_item, void xtbl_param);

Both of these function types receive a table item as their first argument tbl_item and the
tbl_param associated with the table as their second argument. This tbl_param is the same
one passed as the third argument to tbl_comparison_func. LIBAVL will never pass a null
pointer as tbl_item to either kind of function.

A tbliitem_func performs some kind of action on tbl_item. The particular action that
it should perform depends on the context in which it is used and the needs of the calling
program.

§5

86

Chapter 2: The Table ADT 11

A tbl_copy_func creates and returns a new copy of tbi_item. If copying fails, then it
returns a null pointer.

2.5 Memory Allocation

The standard C library functions malloc() and free() are the usual way to obtain and
release memory for dynamic data structures like tables. Most users will be satisfied if
LiBAVL uses these routines for memory management. On the other hand, some users will
want to supply their own methods for allocating and freeing memory, perhaps even different
methods from table to table. For these users’ benefit, each table is associated with a memory
allocator, which provides functions for memory allocation and deallocation. This allocator
has the same form in each table implementation. It looks like this:

(Memory allocator 5) =

#ifndef LIBAVL_ALLOCATOR

#define LIBAVL_ALLOCATOR

/* Memory allocator. s/

struct libavl_allocator {
void *(xlibavl_malloc) (struct libavl_allocator *, size_t libavl_size);
void (xlibavl_free) (struct libavl_allocator *, void *libavl_block);

b

#endif

This code is included in §14, §99, and §649.

Members of struct libavl_allocator have the same interfaces as the like-named stan-
dard C library functions, except that they are each additionally passed a pointer to the
struct libavl_allocator * itself as their first argument. The table implementations never call
tbl_malloc() with a zero size or tbl_free() with a null pointer block.

The struct libavl_allocator type is shared between all of LIBAVL’s modules, so its name
begins with libavl_, not with the specific module prefix that we’ve been representing generi-
cally here as tbl_. This makes it possible for a program to use a single allocator with multiple
LiBAVL table modules, without the need to declare instances of different structures.

The default allocator is just a wrapper around malloc() and free(). Here it is:

(Default memory allocation functions 6) =
/* Allocates size bytes of space using malloc(). Returns a null pointer if allocation fails. */
void *tbl_malloc (struct libavl_allocator xallocator, size_t size) {

assert (allocator != NULL && size > 0);

return malloc (size);

}

/* Frees block. x/

void tbl_free (struct libavl allocator xallocator, void xblock) {
assert (allocator '= NULL && block != NULL);
free (block);

}

/* Default memory allocator that uses malloc() and free(). */
struct libavl_allocator tbl_allocator_default = {tbl_malloc, tbl_free};

This code is included in §29, §145, §196, §251, §300, §336, §375, §418, §455, §489, §522, §554, and §649.

§7

68

12 GNU libavl 2.0.2

The default allocator comes along with header file declarations:

(Default memory allocator header 7) =

/% Default memory allocator. */

extern struct libavl_allocator tbl_allocator_default;
void xtbl_malloc (struct libavl allocator *, size_t);
void tbl_free (struct libavl allocator x, void *);

This code is included in §14 and §649.
See also: [FSF 1999], nodes “Malloc Examples” and “Changing Block Size”.

Exercises:

1. This structure is named with a libavl_ prefix because it is shared among all of LIBAVL’s
module. Other types are shared among LIBAVL modules, too, such as tbl_item_func. Why
don’t the names of these other types also begin with lzbavl_?

2. Supply an alternate allocator, still using malloc() and free(), that prints an error message
to stderr and aborts program execution when memory allocation fails.

*3. Some kinds of allocators may need additional arguments. For instance, if memory for
each table is taken from a separate Apache-style “memory pool”, then a pointer to the pool
structure is needed. Show how this can be done without modifying existing types.

2.6 Creation and Destruction

This section describes the functions that create and destroy tables.

(Table creation function prototypes 8) =
/* Table functions. */
struct tbl_table xtbl_create (tbl_comparison_func *, void *, struct libavl_allocator *);
struct tbl_table xtbl_copy (const struct tbl_table x, tbl_copy_func *,
tbl_item_func x, struct libavl_allocator x);
void tbl_destroy (struct tbl_table x, tbl_item_func x*);

This code is included in §15.

o tbl_create(): Creates and returns a new, empty table as a struct tbl_table «. The table
is associated with the given arguments. The void * argument is passed as the third
argument to the comparison function when it is called. If the allocator is a null pointer,
then tbl_allocator_default is used.

e tbl_destroy(): Destroys a table. During destruction, the tbl item_func provided, if non-
null, is called once for every item in the table, in no particular order. The function, if
provided, must not invoke any table function or macro on the table being destroyed.

o tbl_copy(): Creates and returns a new table with the same contents as the existing
table passed as its first argument. Its other three arguments may all be null pointers.

If a tbl_copy_func is provided, then it is used to make a copy of each table item as it is
inserted into the new table, in no particular order (a deep copy). Otherwise, the void *
table items are copied verbatim (a shallow copy).

If the table copy fails, either due to memory allocation failure or a null pointer returned

by the tbl_copy_func, tbl_copy() returns a null pointer. In this case, any provided
tbl_item_func is called once for each new item already copied, in no particular order.

§9

§10

Chapter 2: The Table ADT 13

By default, the new table uses the same memory allocator as the existing one. If non-
null, the struct libavl _allocator * given is used instead as the new memory allocator.
To use the tbl_allocator_default allocator, specify &tbl_allocator_default explicitly.

2.7 Count

This function returns the number of items currently in a table.

(Table count function prototype 9) =
size_t tbl_count (const struct tbl_table x);

The actual tables instead use a macro for implementation.
Exercises:

1. Implement tbl_count() as a macro, on the assumption that struct tbl table keeps the
number of items in the table in a size_t member named tbl_count.

2.8 Insertion and Deletion

These functions insert and delete items in tables. There is also a function for searching
a table without modifying it.

The design behind the insertion functions takes into account a couple of important issues:

e What should happen if there is a matching item already in the tree? If the items
contain only keys and no values, then there’s no point in doing anything. If the items
do contain values, then we might want to leave the existing item or replace it, depending
on the particular circumstances. The tbl_insert() and tbl_replace() functions are handy
in simple cases like these.

e Occasionally it is convenient to insert one item into a table, then immediately replace
it by a different item that has identical key data. For instance, if there is a good chance
that a data item already exists within a table, then it might make sense to insert data
allocated as a local variable into a table, then replace it by a dynamically allocated
copy if it turned out that the item wasn’t already in the table. That way, we save the
time required to make an additional copy of the item to insert. The tbl_probe() function
allows for this kind of flexibility.

(Table insertion and deletion function prototypes 10) =
void #xtbl_probe (struct tbl table x, void *);

void xtbl_insert (struct tbl_table %, void *);

void xtbl_replace (struct tbl_table *, void x);

void xtbl_delete (struct tbl_table %, const void x);

void *tbl_find (const struct tbl_table *, const void x);

This code is included in §15.

Each of these functions takes a table to manipulate as its first argument and a table item
as its second argument, here called table and item, respectively. Both arguments must be
non-null in all cases. All but tbl_probe() return a table item or a null pointer.

e tbl_probe(): Searches in table for an item matching item. If found, a pointer to the
void * data item is returned. Otherwise, item is inserted into the table and a pointer

§11

14 GNU libavl 2.0.2

to the copy within the table is returned. Memory allocation failure causes a null pointer
to be returned.

The pointer returned can be used to replace the item found or inserted by a different
item. This must only be done if the replacement item has the same position relative
to the other items in the table as did the original item. That is, for existing item
e, replacement item 7, and the table’s comparison function f(), the return values of
f(e,) and f(r, x) must have the same sign for every other item z currently in the
table. Calling any other table function invalidates the pointer returned and it must
not be referenced subsequently.

o tblinsert(): Inserts item into table, but not if a matching item exists. Returns a null
pointer if successful or if a memory al