GNU Octave

A high-level interactive language for numerical computations
Edition 3 for Octave version 2.9.18
July 2007

John W. Eaton
David Bateman
Sgren Hauberg

Copyright © 1996, 1997, 1999, 2000, 2001, 2002, 2005, 2006, 2007 John W. Eaton.

This is the third edition of the Octave documentation, and is consistent with version 2.9.18
of Octave.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the same conditions as for modified versions.

Portions of this document have been adapted from the gawk, readline, gcc, and C library
manuals, published by the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301-1307, USA.

Table of Contents

Preface............c .. 1
Acknowledgements 1
How You Can Contribute to Octave 3
Distribution ... 4

1 A Brief Introduction to Octave 5
1.1 Running Octave....... ... 5
1.2 Simple Examples)

1.2.1 Creating a Matrix ..o 5
1.2.2 Matrix Arithmetic 6
1.2.3 Solving Linear Equations................................ 6
1.2.4 Integrating Differential Equations........................ 6
1.2.5 Producing Graphical Output 7
1.2.6 Editing What You Have Typed 7
1.2.7 Help and Documentation................................ 7
1.3 Conventionsoue 8
1.3.1 Fonts 8
1.3.2 Evaluation Notation 8
1.3.3 Printing Notation........... 9
1.3.4 Error MesSagesuueiine i 9
1.3.5 Format of Descriptions 9
1.3.5.1 A Sample Function Description...................... 9
1.3.5.2 A Sample Command Description 10
1.3.5.3 A Sample Variable Description..................... 10

2 Getting Started..................., 11

2.1 Invoking Octave from the Command Line 11
2.1.1 Command Line Options................coiiiiiiii... 11
2.1.2 Startup Files 14

2.2 Quitting Octave. ... 14

2.3 Commands for Getting Help 15

2.4 Command Line Editing..................., 17
2.4.1 Cursor Motion. ... 17
2.4.2 Killing and Yanking................ 18
2.4.3 Commands For Changing Text.......................... 18
2.4.4 Letting Readline Type For You......................... 19
2.4.5 Commands For Manipulating The History 19
2.4.6 Customizing readlineouiiumeiiunneeonn... 22
2.4.7 Customizing the Prompt 22
2.4.8 Diary and Echo Commands............................. 23

2.5 How Octave Reports Errors................................. 24

2.6 Executable Octave Programs................................ 25

2.7 Comments in Octave Programs.............................. 26

ii

3 DataTypesccvviiiiiiiiiinnnnnnennns 29
3.1 Built-in Data Types ... 29
3.1.1 Numeric Objects.o 30

3.1.2 Missing Data............ i 30

3.1.3 String Objects. ... 30

3.1.4 Data Structure Objects 31

3.1.5 Cell Array ObjectS. 31

3.2 User-defined Data Types..........oouniiinniinn. .. 31
3.3 ODbJect SIZES ..ottt 31

4 Numeric Data Types...................... 33
4.1 Matrices . . oo 34
4.1.1 Empty Matrices ... 36

4.2 RANEES . . oottt 37
4.3 Integer Data Types..........co .. 38
4.3.1 Integer Arithmetic............. 39

4.4 Bit Manipulations........ 40
4.5 Logical Values 42
4.6 Predicates for Numeric Objects.............. 43

B O Strings......ooeiiiiiiiiiiiiiiieeee 45
5.1 Creating Strings.c.oourier e, 46
5.2 Comparing SEringsoouuiiiinnnee ... 48
5.3 Manipulating Strings i 49
5.4 String CONVErSIONSottt 54
5.5 Character Class Functions 58

6 DataContainers.......................... 61
6.1 Data Structures. ... 61
6.1.1 Structure ArTays.ttt 63

6.1.2 Creating Structures, 65

6.1.3 Manipulating Structures................. 67

6.1.4 Processing Data in Structures 68

6.2 Cell ATTAYS ..ottt 69
6.2.1 Creating Cell Array...........ooiiii ... 70

6.2.2 Indexing Cell Arrays...........ooiiiiiiininee . 71

6.2.3 Cell Arrays of Strings 72

6.2.4 Processing Data in Cell Arrays 73

6.3 Comma Separated Lists............... 75

7 Variables.............. ..., 77
7.1 Global Variables 77
7.2 Persistent Variables 78
7.3 Status of Variables 80
7.4 Summary of Built-in Variables 83

7.5 Defaults from the Environment.......... 86

GNU Octave

8 Expressionsciiiiiiiiiinn.. 87

8.1 Index EXpressionsoieiiineiiineiininn. .. 87
8.2 Calling Functions 89
8.2.1 Callby Value............. i 90
8.2.2 Recursion 91
8.3 Arithmetic Operators......... 91
8.4 Comparison Operators.iiiiineeinneein... 93
8.5 Boolean Expressions. 94
8.5.1 Element-by-element Boolean Operators.................. 94
8.5.2 Short-circuit Boolean Operators 95
8.6 Assignment Expressions 96
8.7 Increment Operatorsiiiiiiiiiiiineein .. 98
8.8 Operator Precedence i 99
9 Evaluation 101
9.1 Calling a Function by its Name............................. 101
9.2 Evaluation in a Different Context........................... 103
10 Statements...................cccun... 105
10.1 The if Statement i, 105
10.2 The switch Statement 107
10.2.1 Notes for the C programmer.......................... 108
10.3 The while Statement.................oo oo, 109
10.4 The do-until Statement 110
10.5 The for Statement.............. 110
10.5.1 Looping Over Structure Elements..................... 111
10.6 The break Statement.................cooiiiineennen... 112
10.7 The continue Statement 113
10.8 The unwind_protect Statement........................... 114
10.9 The try Statement............o. i 114
10.10 Continuation Lines........... i, 115
11 Functions and Script Files............... 117
11.1 Defining Functions 117
11.2 Multiple Return Values............ 119
11.3 Variable-length Argument Lists 121
11.4 Variable-length Return Lists 122
11.5 Returning From a Function 123
11.6 Default Arguments......... 124
11.7 Function Files 124
11.7.1 Manipulating the load path........................... 125
11.7.2 Subfunctions 127
11.7.3 Overloading and Autoloading......................... 127
11.7.4 Function Locking o i 129
11.8 Script Fileso 130

11.9 Function Handles, Inline Functions, and Anonymous Functions
.. 131

iv

11.9.1 Function Handles.........., 131
11.9.2 Anonymous Functions..................... 132
11.9.3 Inline Functions i ... 133
1110 Commandst 133
11.11 Organization of Functions Distributed with Octave 135
12 Errors and Warnings.................... 137
12.1 Handling Errors...... 137
12.1.1 Raising Errors..... 137
12.1.2 Catching Errors 139
12.2 Handling Warnings................. ... 141
12.2.1 Issuing Warnings ..., 141
12.2.2 Enabling and Disabling Warnings..................... 142
13 Debuggingccoviiiiiiiiii.. .. 147
13.1 Entering Debug Mode 147
13.2 Breakpoints......... ... i 147
13.3 Debug Mode...... ... 149
14 Input and Output 151
14.1 Basic Input and Output 151
14.1.1 Terminal OQutput 151
14.1.1.1 Paging Screen OQutput 154
14.1.2 Terminal Input 155
14.1.3 Simple File I/O ... o 156
14.1.3.1 Saving Data on Unexpected Exits 160
14.1.4 Rational Approximations............................. 161
14.2 C-Style I/O Functions............... ..., 161
14.2.1 Opening and Closing Files............................ 162
14.2.2 Simple Output ... 164
14.2.3 Line-Oriented Input 164
14.2.4 Formatted Output......... 165
14.2.5 Output Conversion for Matrices 166
14.2.6 Output Conversion Syntax 166
14.2.7 Table of Output Conversions 167
14.2.8 Integer Conversionsuuuunnneeeeiona. 168
14.2.9 Floating-Point Conversions 168
14.2.10 Other Output Conversions 169
14.2.11 Formatted Input.......... 170
14.2.12 Input Conversion Syntaxeeeeeeeo... 171
14.2.13 Table of Input Conversions 171
14.2.14 Numeric Input Conversions. 172
14.2.15 String Input Conversions............................ 173
14.2.16 Binary I/O. ... 173
14.2.17 Temporary Files........ 176
14.2.18 End of File and Errors.............................. 176

14.2.19 File Positioningo 177

GNU Octave

15 Plotting..............ciiiiiiiiiii... 179

15.1 Plotting Basics. ... 179
15.1.1 Two-Dimensional Plots 179
15.1.2 Three-Dimensional Plotting 191
15.1.3 Plot Annotationsc.iiiiii... 195
15.1.4 Multiple Plots on One Page 196
15.1.5 Multiple Plot Windows 197
15.1.6 Printing Plots 197
15.1.7 Test Plotting Functions 199

15.2 Advanced Plotting 200
15.2.1 Graphics Objectsovviiiii 200
15.2.2 Graphics Object Properties........................... 204

15.2.2.1 Root Figure Properties.......................... 204
15.2.2.2 Figure Properties 204
15.2.2.3 Axes Properties................ 205
15.2.2.4 Line Properties 207
15.2.2.5 Text Properties..............c ... 207
15.2.2.6 Image Properties.......... 210
15.2.2.7 Patch Properties................................ 210
15.2.2.8 Surface Properties............... 211
15.2.3 Managing Default Properties......................... 211
1524 ColOrS . oo e e 212
15.2.5 Line Styles. ... 212
15.2.6 Marker Stylesoooiiiiiii 212
15.2.7 Interaction with gnuplot............................. 213
16 Matrix Manipulation 215

16.1 Finding Elements and Checking Conditions 215

16.2 Rearranging Matrices............ i 217

16.3 Applying a Function to an Array 223

16.4 Special Utility Matrices. 224

16.5 Famous Matrices. i 229

17 Arithmetic............................. 233

17.1 Utility Functionsc 233

17.2 Complex Arithmetic.......... 238

17.3 Trigonometry 239

17.4 Sums and Products............ 242

17.5 Special Functions 243

17.6 Coordinate Transformations............................... 247

17.7 Mathematical Constants............ 248

18 Linear Algebra......................... 251

18.1 Techniques used for Linear Algebra........................ 251

18.2 Basic Matrix Functions............. 251

18.3 Matrix Factorizations........... 255

18.4 Functions of a Matrixco .. 260

vi

19 Nonlinear Equations.................... 263
20 Sparse Matricesccovveeeenn... 265
20.1 The Creation and Manipulation of Sparse Matrices 265
20.1.1 Storage of Sparse Matrices 265
20.1.2 Creating Sparse Matrices............ooviiieerinna... 266
20.1.3 Finding out Information about Sparse Matrices 273
20.1.4 Basic Operators and Functions on Sparse Matrices 277
20.1.4.1 Sparse Functions............. 277

20.1.4.2 The Return Types of Operators and Functions 278

20.1.4.3 Mathematical Considerations 278

20.2 Linear Algebra on Sparse Matrices 286
20.3 Tterative Techniques applied to sparse matrices............. 292
20.4 Real Life Example of the use of Sparse Matrices............ 297
21 Numerical Integration 301
21.1 Functions of One Variable 301
21.2 Orthogonal Collocation............ 303
21.3 Functions of Multiple Variables............................ 303
22 Differential Equations................... 305
22.1 Ordinary Differential Equations 305
22.2 Differential-Algebraic Equations........................... 307
23 Optimization........................... 315
23.1 Linear Programming 315
23.2 Quadratic Programming i 321
23.3 Nonlinear Programming 322
23.4 Linear Least Squares 324
24 Statistics.......... ..., 325
24.1 Descriptive Statisticsoiiii .. 325
24.2 Basic Statistical Functions 328
24.3 Statistical Plots........... ... 331
244 TSt .ot 332
24.5 Models 339
24.6 Distributions 340
24.7 Random Number Generation.............................. 347
25 Financial Functions..................... 353
26 Sets ... e 355

GNU Octave

27 Polynomial Manipulations............... 357
27.1 Evaluating Polynomials.............. 357
27.2 Finding Roots 357
27.3 Products of Polynomials................. 358
27.4 Derivatives and Integrals............, 360
27.5 Polynomial Interpolation 361
27.6 Miscellaneous Functions 363

28 Interpolation........................... 365
28.1 One-dimensional Interpolation 365
28.2 Multi-dimensional Interpolation........................... 369

29 Geometry.........coiiiiiiiiiiiiiiaa.. 373
29.1 Delaunay Triangulation.............. 373

29.1.1 Plotting the Triangulation............................ 375
29.1.2 Identifying points in Triangulation.................... 376
29.2 Voronoi Diagrams...............ooiniiiiniinn... 378
29.3 Convex Hull 381
29.4 Interpolation on Scattered Data........................... 382

30 Control Theory......................... 385

30.1 System Data Structure 385
30.1.1 Variables common to all OCST system formats......... 386
30.1.2 tf format variables 386
30.1.3 zp format variablesl 386
30.1.4 ss format variables L 387

30.2 System Construction and Interface Functions............... 387
30.2.1 Finite impulse response system interface functions...... 387
30.2.2 State space system interface functions................. 388
30.2.3 Transfer function system interface functions 393
30.2.4 Zero-pole system interface functions................... 395
30.2.5 Data structure access functions 396

30.3 System display functions............ 401

30.4 Block Diagram Manipulations............................. 402

30.5 Numerical Functions 410

30.6 System Analysis-Properties, 414

30.7 System Analysis-Time Domain 419

30.8 System Analysis-Frequency Domain 423

30.9 Controller Designo i, 427

30.10 Miscellaneous Functions (Not yet properly filed /documented)

.. 434

vii

viii

32 Image Processing....................... 449
32.1 Loading and Saving Images 449
32.2 Displaying Images. ... 450
32.3 Representing Images.c i 451
32.4 Plotting on top of Images.............., 455
32.5 Color Conversionouueie ettt it 455

33 Audio Processing....................... 457

34 Quaternions................ciiiiiiin... 459

35 System Utilities 461
35.1 Timing Utilities.oooii e 461
35.2 Filesystem Utilities. 469
35.3 File Archiving Utilities i, 475
35.4 Networking Utilities......... 476
35.5 Controlling Subprocesses. ...t ... 477
35.6 Process, Group, and User IDs............................. 482
35.7 Environment Variables 482
35.8 Current Working Directory 483
35.9 Password Database Functions 484
35.10 Group Database Functions............................... 485
35.11 System Information 485
35.12 Hashing Functions, 487

36 Packages............ciiiiiiiiiiiii.. 489
36.1 Installing and Removing Packages 489
36.2 Using Packages i 490
36.3 Administrating Packages............. ... 490
36.4 Creating Packages............ ... i 490

36.4.1 The DESCRIPTION File 492
36.4.2 The INDEX file i 493
36.4.3 PKG_ADD and PKG_DEL directives 494

Appendix A Dynamically Linked Functions

....................................... 495
AT Oct-Files.o 495
A.1.1 Getting Started with Oct-Files........................ 495
A.1.2 Matrices and Arrays in Oct-Files...................... 498
A.1.3 Character Strings in Oct-Files......................... 502
A.1.4 Cell Arrays in Oct-Files 504
A.1.5 Structures in Oct-Files 506
A.1.6 Sparse Matrices in Oct-Files 507
A.1.6.1 The Differences between the Array and Sparse Classes
.. 508

GNU Octave

A.1.6.3 Using Sparse Matrices in Oct-Files................ 512

A.1.7 Accessing Global Variables in Oct-Files 513

A.1.8 Calling Octave Functions from Oct-Files............... 514

A.1.9 Calling External Code from Oct-Files.................. 516
A.1.10 Allocating Local Memory in Oct-Files 520
A.1.11 Input Parameter Checking in Oct-Files 520
A.1.12 Exception and Error Handling in Oct-Files............ 522
A.1.13 Documentation and Test of Oct-Files................. 524

A2 Mex-Fileso 525
A.2.1 Getting Started with Mex-Files 525

A.2.2 Working with Matrices and Arrays in Mex-Files........ 528

A.2.3 Character Strings in Mex-Files........................ 530

A.2.4 Cell Arrays with Mex-Files............................ 531

A.2.5 Structures with Mex-Files............................. 533

A.2.6 Sparse Matrices with Mex-Files 535

A.2.7 Calling Other Functions in Mex-Files.................. 539

A.3 Standalone Programs 540
Appendix B Test and Demo Functions 543
B.1l Test Functions............oiiii i 543
B.2 Demonstration Functions................ 547
Appendix C Tips and Standards 551
C.1 Writing Clean Octave Programs 551
C.2 Tips for Making Code Run Faster. 551
C.3 Tips on Writing Commentsoiinie.... 552
C.4 Conventional Headers for Octave Functions................. 552
C.5 Tips for Documentation Strings............................ 554
Appendix D Known Causes of Trouble..... 561
D.1 Actual Bugs We Haven’t Fixed Yet 561
D.2 Reporting Bugs........ ... 561
D.3 Have You Found a Bug? 562
D.4 Where to Report Bugs o 562
D.5 How to Report Bugs......... ... i 562
D.6 Sending Patches for Octave................................ 564
D.7 How To Get Help with Octave............................. 565
Appendix E Installing Octave.............. 567
E.1 Installation Problems 570
Appendix F Emacs Octave Support........ 573
F.1 Installing EOS. ... 573
F.2 Using Octave Mode ... 573
F.3 Running Octave From Within Emacs....................... 577

F.4 Using the Emacs Info Reader for Octave.................... 578

ix

Appendix G GNU GENERAL PUBLIC
LICENSE.........cciiiiiiiiiiiiinnn.. 581
Concept Index..............coiiinnnn.. 593
Variable Index................ 597
FunctionIndex 599

Operator Indexcoiii... 611

GNU Octave

Preface

Octave was originally intended to be companion software for an undergraduate-level text-
book on chemical reactor design being written by James B. Rawlings of the University of
Wisconsin-Madison and John G. Ekerdt of the University of Texas.

Clearly, Octave is now much more than just another ‘courseware’ package with limited
utility beyond the classroom. Although our initial goals were somewhat vague, we knew
that we wanted to create something that would enable students to solve realistic problems,
and that they could use for many things other than chemical reactor design problems.

There are those who would say that we should be teaching the students Fortran instead,
because that is the computer language of engineering, but every time we have tried that, the
students have spent far too much time trying to figure out why their Fortran code crashes
and not enough time learning about chemical engineering. With Octave, most students pick
up the basics quickly, and are using it confidently in just a few hours.

Although it was originally intended to be used to teach reactor design, it has been used in
several other undergraduate and graduate courses in the Chemical Engineering Department
at the University of Texas, and the math department at the University of Texas has been
using it for teaching differential equations and linear algebra as well. If you find it useful,
please let us know. We are always interested to find out how Octave is being used in other
places.

Virtually everyone thinks that the name Octave has something to do with music, but it
is actually the name of a former professor of mine who wrote a famous textbook on chemical
reaction engineering, and who was also well known for his ability to do quick ‘back of the
envelope’ calculations. We hope that this software will make it possible for many people to
do more ambitious computations just as easily.

Everyone is encouraged to share this software with others under the terms of the GNU
General Public License (see Appendix G [Copying], page 581) as described at the beginning
of this manual. You are also encouraged to help make Octave more useful by writing and
contributing additional functions for it, and by reporting any problems you may have.

Acknowledgements

Many people have already contributed to Octave’s development. The following people have
helped write parts of Octave or helped out in various other ways (listed alphabetically).

Ben Abbott Andy Adler Joel Andersson
Muthiah Annamalai Shai Ayal Roger Banks

Ben Barrowes Alexander Barth David Bateman

Heinz Bauschke Karl Berry David Billinghurst
Don Bindner Jakub Bogusz Moritz Borgmann
Marcus Brinkmann Remy Bruno Marco Caliari

Daniel Calvelo John C. Campbell Jean-Francois Cardoso
Joao Cardoso Larrie Carr David Castelow
Vincent Cautaerts Clinton Chee Albert Chin-A-Young
J. D. Cole Martin Costabel Michael Creel

Jeff Cunningham Martin Dalecki Jorge Barros de Abreu

Philippe Defert Bill Denney David M. Doolin

Pascal A. Dupuis
Paul Eggert

Rolf Fabian
Torsten Finke
Eduardo Gallestey
Driss Ghaddab
Glenn Golden
Etienne Grossmann
William P. Y. Hadisoeseno
Soren Hauberg
Roman Hodek

Tom Holroyd
Christopher Hulbert
Alan W. Irwin

Cai Jianming
Atsushi Kajita

Joel Keay

Aaron A. King
Heine Kolltveit
Piotr Krzyzanowski
Rafael Laboissiere
Walter Landry
Maurice LeBrun
Ross Lippert
Massimo Lorenzin
Jens-Uwe Mager
Makoto Matsumoto
Christoph Mayer
Kai P. Mueller
Todd Neal

Takuji Nishimura
Thorsten Ohl

Scott Pakin

Per Persson
Nicholas Piper
Orion Poplawski
Francesco Potorti
Balint Reczey
Matthew W. Roberts
Kevin Ruland
Juhani Saastamoinen
Michel D. Schmid
Ludwig Schwardt
Baylis Shanks
Julius Smith
Quentin H. Spencer
Russell Standish

John W. Eaton
Stephen Eglen
Stephen Fegan

Jose Daniel Munoz Frias
Walter Gautschi
Nicolo Giorgetti
Tomislav Goles
Peter Gustafson
Benjamin Hall
Daniel Heiserer

A. Scottedward Hodel
David Hoover

Cyril Humbert

Geoff Jacobsen
Steven G. Johnson
Mohamed Kamoun
Mumit Khan

Arno J. Klaassen
Ken Kouno

Volker Kuhlmann
Kai Labusch

Bill Lash

Friedrich Leisch
David Livings
Hoxide Ma

Ricardo Marranita
Laurent Mazet
Stefan Monnier
Victor Munoz

Al Niessner

Eric Norum

Arno Onken
Gabriele Pannocchia
Jim Peterson

Hans Ekkehard Plesser
Ondrej Popp

James B. Rawlings
Michael Reifenberger
Andrew Ross

Olli Saarela

Ben Sapp

Nicol N. Schraudolph
Daniel J. Sebald
Joseph P. Skudlarek
Shan G. Smith
Christoph Spiel
Doug Stewart

GNU Octave

Dirk Eddelbuettel
Peter Ekberg
Ramon Garcia Fernandez
Castor Fu

Klaus Gebhardt
Michael Goffioul
Keith Goodman
Kai Habel

Kim Hansen

Yozo Hida

Richard Allan Holcombe
Kurt Hornik
Teemu Ikonen
Mats Jansson
Heikki Junes

Lute Kamstra

Paul Kienzle
Geoffrey Knauth
Oyvind Kristiansen
Miroslaw Kwasniak
Claude Lacoursiere
Dirk Laurie
Benjamin Lindner
Erik de Castro Lopo
James Macnicol
Orestes Mas

G. D. McBain
Antoine Moreau
Carmen Navarrete
Rick Niles

Michael O’Brien
Luis F. Ortiz
Sylvain Pelissier
Danilo Piazzalunga
Tom Poage

Jef Poskanzer

Eric S. Raymond
Petter Risholm
Mark van Rossum
Toni Saarela

Alois Schloegl
Sebastian Schubert
Dmitri A. Sergatskov
John Smith

Joerg Specht
Richard Stallman
Thomas Stuart

John Swensen Ariel Tankus Georg Thimm
Duncan Temple Lang Olaf Till Thomas Treichl
Utkarsh Upadhyay Stefan van der Walt Peter Van Wieren
James R. Van Zandt Gregory Vanuxem Ivana Varekova
Thomas Walter Olaf Weber Thomas Weber
Bob Weigel Andreas Weingessel Michael Weitzel
Fook Fah Yap Michael Zeising Federico Zenith

Alex Zvoleff

Special thanks to the following people and organizations for supporting the development

of Octave:

The United States Department of Energy, through grant number DE-FG02-04ER25635.

Ashok Krishnamurthy, David Hudak, Juan Carlos Chaves, and Stanley C. Ahalt of the
Ohio Supercomputer Center.

The National Science Foundation, through grant numbers CTS-0105360, CTS-9708497,
CTS-9311420, CTS-8957123, and CNS-0540147.

The industrial members of the Texas-Wisconsin Modeling and Control Consortium
(TWMCCQ).

The Paul A. Elfers Endowed Chair in Chemical Engineering at the University of
Wisconsin-Madison.

Digital Equipment Corporation, for an equipment grant as part of their External Re-
search Program.

Sun Microsystems, Inc., for an Academic Equipment grant.

International Business Machines, Inc., for providing equipment as part of a grant to
the University of Texas College of Engineering.

Texaco Chemical Company, for providing funding to continue the development of this
software.

The University of Texas College of Engineering, for providing a Challenge for Excellence
Research Supplement, and for providing an Academic Development Funds grant.

The State of Texas, for providing funding through the Texas Advanced Technology
Program under Grant No. 003658-078.

Noel Bell, Senior Engineer, Texaco Chemical Company, Austin Texas.

John A. Turner, Group Leader, Continuum Dynamics (CCS-2), Los Alamos National
Laboratory, for registering the octave.org domain name.

James B. Rawlings, Professor, University of Wisconsin-Madison, Department of Chem-
ical and Biological Engineering.

Richard Stallman, for writing GNU.

This project would not have been possible without the GNU software used in and used

to produce Octave.

How You Can Contribute to Octave

There are a number of ways that you can contribute to help make Octave a better system.
Perhaps the most important way to contribute is to write high-quality code for solving new
problems, and to make your code freely available for others to use.

http://www.che.utexas.edu/twmcc
octave.org

4 GNU Octave

If you find Octave useful, consider providing additional funding to continue its develop-
ment. Even a modest amount of additional funding could make a significant difference in
the amount of time that is available for development and support.

If you cannot provide funding or contribute code, you can still help make Octave better
and more reliable by reporting any bugs you find and by offering suggestions for ways to
improve Octave. See Appendix D [Trouble], page 561, for tips on how to write useful bug
reports.

Distribution

Octave is free software. This means that everyone is free to use it and free to redistribute it
on certain conditions. Octave is not in the public domain. It is copyrighted and there are
restrictions on its distribution, but the restrictions are designed to ensure that others will
have the same freedom to use and redistribute Octave that you have. The precise conditions
can be found in the GNU General Public License that comes with Octave and that also
appears in Appendix G [Copying], page 581.

Octave is available on CD-ROM with various collections of other free software, and
from the Free Software Foundation. Ordering a copy of Octave from the Free Software
Foundation helps to fund the development of more free software. For more information,
write to

Free Software Foundation

51 Franklin Street, Fifth Floor
Boston, MA 02110-1301-1307
USA

Octave can also be downloaded from http://www.octave.org, where additional infor-
mation also is available.

http://www.octave.org

Chapter 1: A Brief Introduction to Octave 5)

1 A Brief Introduction to Octave

This manual documents how to install, run, and use GNU Octave, and how to report bugs.

GNU Octave is a high-level language, primarily intended for numerical computations.
It provides a convenient command line interface for solving linear and nonlinear problems
numerically, and for performing other numerical experiments. It may also be used as a
batch-oriented language.

GNU Octave is also freely redistributable software. You may redistribute it and /or mod-
ify it under the terms of the GNU General Public License as published by the Free Software
Foundation. The GPL is included in this manual in Appendix G [Copying], page 581.

This document corresponds to Octave version 2.9.18.

1.1 Running Octave

On most systems, the way to invoke Octave is with the shell command ‘octave’. Octave
displays an initial message and then a prompt indicating it is ready to accept input. You
can begin typing Octave commands immediately afterward.

If you get into trouble, you can usually interrupt Octave by typing Control-C (usually
written C-c for short). C-c gets its name from the fact that you type it by holding down
and then pressing (. Doing this will normally return you to Octave’s prompt.

To exit Octave, type quit, or exit at the Octave prompt.

On systems that support job control, you can suspend Octave by sending it a SIGTSTP
signal, usually by typing C-z.

1.2 Simple Examples
The following chapters describe all of Octave’s features in detail, but before doing that, it
might be helpful to give a sampling of some of its capabilities.

If you are new to Octave, I recommend that you try these examples to begin learning
Octave by using it. Lines marked with ‘octave:13>’ are lines you type, ending each with
a carriage return. Octave will respond with an answer, or by displaying a graph.

1.2.1 Creating a Matrix

To create a new matrix and store it in a variable so that it you can refer to it later, type
the command
octave:1> A = [1, 1, 2; 3, 5, 8; 13, 21, 34]
Octave will respond by printing the matrix in neatly aligned columns. Ending a command
with a semicolon tells Octave to not print the result of a command. For example
octave:2> B = rand (3, 2);

will create a 3 row, 2 column matrix with each element set to a random value between zero
and one.

To display the value of any variable, simply type the name of the variable. For example,
to display the value stored in the matrix B, type the command

octave:3> B

6 GNU Octave

1.2.2 Matrix Arithmetic

Octave has a convenient operator notation for performing matrix arithmetic. For example,
to multiply the matrix a by a scalar value, type the command

octave:4> 2 x A

To multiply the two matrices a and b, type the command
octave:5> A * B

and to form the matrix product ATA, type the command

octave:6> A’ *x A

1.2.3 Solving Linear Equations
To solve the set of linear equations Ax = b, use the left division operator, ‘\’:
octave:7> A \ b

This is conceptually equivalent to A~'b, but avoids computing the inverse of a matrix
directly.

If the coefficient matrix is singular, Octave will print a warning message and compute a
minimum norm solution.

1.2.4 Integrating Differential Equations

Octave has built-in functions for solving nonlinear differential equations of the form

d

—=f@t), alt=to) =,

For Octave to integrate equations of this form, you must first provide a definition of the
function f(x,t). This is straightforward, and may be accomplished by entering the function
body directly on the command line. For example, the following commands define the right
hand side function for an interesting pair of nonlinear differential equations. Note that

while you are entering a function, Octave responds with a different prompt, to indicate that
it is waiting for you to complete your input.

octave:8> function xdot = f (x, t)

>

> r = 0.25;

> k =1.4;

> a 1.5;

> b 0.16;

> ¢ = 0.9;

> d = 0.8;

>

> xdot(1) = rxx(D*(1 - x(1)/k) - a*xx(1)*x(2)/(1 + b*x(1));
> xdot(2) = ckaxx(1)*x(2)/(1 + b*x(1)) - d*x(2);
>

> endfunction

Given the initial condition

Chapter 1: A Brief Introduction to Octave 7

x0 = [1; 2];
and the set of output times as a column vector (note that the first output time corresponds
to the initial condition given above)
t = linspace (0, 50, 200)’;
it is easy to integrate the set of differential equations:
x = lsode ("f", x0, t);
The function 1sode uses the Livermore Solver for Ordinary Differential Equations, described

in A. C. Hindmarsh, ODEPACK, a Systematized Collection of ODE Solvers, in: Scientific
Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pages 55—64.

1.2.5 Producing Graphical Output

To display the solution of the previous example graphically, use the command
plot (t, x)

If you are using a graphical user interface, Octave will automatically create a separate
window to display the plot.

To save a plot once it has been displayed on the screen, use the print command. For
example,

print -deps foo.eps
will create a file called ‘foo.eps’ that contains a rendering of the current plot. The command
help print

explains more options for the print command and provides a list of additional output file
formats.

1.2.6 Editing What You Have Typed

At the Octave prompt, you can recall, edit, and reissue previous commands using Emacs-
or vi-style editing commands. The default keybindings use Emacs-style commands. For
example, to recall the previous command, press Control-p (usually written C-p for short).
Doing this will normally bring back the previous line of input. C-n will bring up the next
line of input, C-b will move the cursor backward on the line, C-f will move the cursor
forward on the line, etc.

A complete description of the command line editing capability is given in this manual
in Section 2.4 [Command Line Editing], page 17.

1.2.7 Help and Documentation

Octave has an extensive help facility. The same documentation that is available in printed
form is also available from the Octave prompt, because both forms of the documentation
are created from the same input file.

In order to get good help you first need to know the name of the command that you
want to use. This name of the function may not always be obvious, but a good place to
start is to just type help. This will show you all the operators, reserved words, functions,
built-in variables, and function files. An alternative is to search the documentation using
the lookfor function. This function is described in Section 2.3 [Getting Help], page 15.

Once you know the name of the function you wish to use, you can get more help on the
function by simply including the name as an argument to help. For example,

8 GNU Octave

help plot
will display the help text for the plot function.

Octave sends output that is too long to fit on one screen through a pager like less or
more. Type a to advance one line, a to advance one page, and (g to exit the
pager.

The part of Octave’s help facility that allows you to read the complete text of the printed
manual from within Octave normally uses a separate program called Info. When you invoke
Info you will be put into a menu driven program that contains the entire Octave manual.
Help for using Info is provided in this manual in Section 2.3 [Getting Help|, page 15.

1.3 Conventions

This section explains the notational conventions that are used in this manual. You may
want to skip this section and refer back to it later.

1.3.1 Fonts

Examples of Octave code appear in this font or form: svd (a). Names that represent
arguments or metasyntactic variables appear in this font or form: first-number. Com-
mands that you type at the shell prompt sometimes appear in this font or form: ‘octave
--no-init-file’. Commands that you type at the Octave prompt sometimes appear in
this font or form: foo --bar --baz. Specific keys on your keyboard appear in this font or

form: (ANY).
1.3.2 Evaluation Notation

In the examples in this manual, results from expressions that you evaluate are indicated
with ‘=’. For example,

sqrt (2)
= 1.4142

You can read this as “sqrt (2) evaluates to 1.4142”.
In some cases, matrix values that are returned by expressions are displayed like this
[1, 2; 3, 4] == [1, 3; 2, 4]
= [1, 0; 0, 1]
and in other cases, they are displayed like this
eye (3)

in order to clearly show the structure of the result.
Sometimes to help describe one expression, another expression is shown that produces
identical results. The exact equivalence of expressions is indicated with ‘=". For example,
rot90 ([1, 2; 3, 4], -1)

rot90 ([1, 2; 3, 4], 3)

rot90 ([1, 2; 3, 41, 7)

Chapter 1: A Brief Introduction to Octave 9

1.3.3 Printing Notation

Many of the examples in this manual print text when they are evaluated. Examples in
this manual indicate printed text with ‘ -’. The value that is returned by evaluating the
expression (here 1) is displayed with ‘=" and follows on a separate line.
printf ("foo %s\n", "bar")
- foo bar
=1

1.3.4 Error Messages

Some examples signal errors. This normally displays an error message on your terminal.
Error messages are shown on a line starting with error:.

struct_elements ([1, 2; 3, 4])
error: struct_elements: wrong type argument ‘matrix’

1.3.5 Format of Descriptions

Functions, commands, and variables are described in this manual in a uniform format. The
first line of a description contains the name of the item followed by its arguments, if any.
The category—function, variable, or whatever—is printed next to the right margin. The
description follows on succeeding lines, sometimes with examples.

1.3.5.1 A Sample Function Description

In a function description, the name of the function being described appears first. It is
followed on the same line by a list of parameters. The names used for the parameters are
also used in the body of the description.

Here is a description of an imaginary function foo:

foo (x,y,...) [Function]
The function foo subtracts x from y, then adds the remaining arguments to the result.
If y is not supplied, then the number 19 is used by default.

foo (1, [3, 51, 3, 9)
= [14, 16 1]
foo (5)
= 14

More generally,

foo (w, x, y, ...)

X -w+y+ ...

Any parameter whose name contains the name of a type (e.g., integer, integerl or matrix)
is expected to be of that type. Parameters named object may be of any type. Parameters
with other sorts of names (e.g., new_file) are discussed specifically in the description of
the function. In some sections, features common to parameters of several functions are
described at the beginning.

Functions in Octave may be defined in several different ways. The category name for
functions may include another name that indicates the way that the function is defined.
These additional tags include

10 GNU Octave

Function File
The function described is defined using Octave commands stored in a text file.
See Section 11.7 [Function Files], page 124.

Built-in Function
The function described is written in a language like C++, C, or Fortran, and is
part of the compiled Octave binary.

Loadable Function
The function described is written in a language like C++, C, or Fortran. On
systems that support dynamic linking of user-supplied functions, it may be
automatically linked while Octave is running, but only if it is needed. See
Appendix A [Dynamically Linked Functions|, page 495.

Mapping Function
The function described works element-by-element for matrix and vector argu-
ments.

1.3.5.2 A Sample Command Description

Command descriptions have a format similar to function descriptions, except that the word
‘Function’ is replaced by ‘Command. Commands are functions that may be called with-
out surrounding their arguments in parentheses. For example, here is the description for
Octave’s cd command:

cd dir [Command]|

chdir dir [Command]|
Change the current working directory to dir. For example, cd ~/octave changes the
current working directory to ‘“/octave’. If the directory does not exist, an error
message is printed and the working directory is not changed.

1.3.5.3 A Sample Variable Description

A variable is a name that can hold a value. Although any variable can be set by the
user, built-in variables typically exist specifically so that users can change them to alter the
way Octave behaves (built-in variables are also sometimes called user options). Ordinary
variables and built-in variables are described using a format like that for functions except
that there are no arguments.

Here is a description of the imaginary variable do_what_i_mean_not_what_i_say.

do_what_i_mean_not_what_i_say [Built-in Variable]
If the value of this variable is nonzero, Octave will do what you actually wanted, even
if you have typed a completely different and meaningless list of commands.

Other variable descriptions have the same format, but ‘Built-in Variable’ is replaced by
‘Variable’, for ordinary variables, or ‘Constant’ for symbolic constants whose values cannot
be changed.

Chapter 2: Getting Started 11

2 Getting Started

This chapter explains some of Octave’s basic features, including how to start an Octave ses-
sion, get help at the command prompt, edit the command line, and write Octave programs
that can be executed as commands from your shell.

2.1 Invoking Octave from the Command Line

Normally, Octave is used interactively by running the program ‘octave’ without any ar-
guments. Once started, Octave reads commands from the terminal until you tell it to
exit.

You can also specify the name of a file on the command line, and Octave will read and
execute the commands from the named file and then exit when it is finished.

You can further control how Octave starts by using the command-line options described
in the next section, and Octave itself can remind you of the options available. Type ‘octave
--help’ to display all available options and briefly describe their use (‘octave -h’is a shorter
equivalent).

2.1.1 Command Line Options
Here is a complete list of all the command line options that Octave accepts.

--debug

-d Enter parser debugging mode. Using this option will cause Octave’s parser to
print a lot of information about the commands it reads, and is probably only
useful if you are actually trying to debug the parser.

—--echo-commands
-X Echo commands as they are executed.

--eval code
Evaluate code and exit when done unless ——persist is also specified.

—--exec-path path
Specify the path to search for programs to run. The value of path specified on
the command line will override any value of OCTAVE_EXEC_PATH found in the
environment, but not any commands in the system or user startup files that set
the built-in variable EXEC_PATH.

--help
-h
-7 Print short help message and exit.

--image-path path
Specify the path to search for images. The value of path specified on the
command line will set the value of IMAGE_PATH found in the environment.

-—info-file filename
Specify the name of the info file to use. The value of filename specified on
the command line will override any value of OCTAVE_INFO_FILE found in the
environment, but not any commands in the system or user startup files that
use the info_file function.

12 GNU Octave

--info-program program
Specify the name of the info program to use. The value of program specified
on the command line will override any value of OCTAVE_INFO_PROGRAM found
in the environment, but not any commands in the system or user startup files
that use the info_program function.

-—interactive

-i Force interactive behavior. This can be useful for running Octave via a remote
shell command or inside an Emacs shell buffer. For another way to run Octave
within Emacs, see Appendix F [Emacs], page 573.

--no-history
-H Disable command-line history.

--no-init-file
Don’t read the ‘~/.octaverc’ or ‘.octaverc’ files.

--no-line-editing
Disable command-line editing.

--no-site-file
Don’t read the site-wide ‘octaverc’ file.

--norc

-f Don’t read any of the system or user initialization files at startup. This is
equivalent to using both of the options —-no-init-file and --no-site-file.

--path path

-p path Specify the path to search for function files. The value of path specified on the
command line will override any value of 0CTAVE_PATH found in the environment,
but not any commands in the system or user startup files that set the internal
load path through one of the path functions.

—-—persist
Go to interactive mode after -—eval or reading from a file named on the com-
mand line.

--silent

--quiet

-q Don’t print the usual greeting and version message at startup.

-—traditional

-—-braindead

For compatibility with MATLAB, set initial values for user-preferences to the
following values

Chapter 2: Getting Started 13

Psl = II>> n
pPS2 =
beep_on_error = true
crash_dumps_octave_core = false
default_save_options = "-mat-binary"
fixed_point_format = true
history_timestamp_format_string

= "Wh== WD AKL:%UM %p —=%%"
page_screen_output = false
print_empty_dimensions = false

and disable the following warnings
Octave:fopen-file-in-path
Octave:function-name-clash
Octave:load-file-in-path

—--verbose
-V Turn on verbose output.

--version
-v Print the program version number and exit.

file Execute commands from file. Exit when done unless —-persist is also specified.

Octave also includes several built-in variables that contain information about the com-
mand line, including the number of arguments and all of the options.

argv () [Built-in Function]
Return the command line arguments passed to Octave. For example, if you invoked
Octave using the command

octave —--no-line-editing --silent

argv would return a cell array of strings with the elements -—no-line-editing and
--silent.

If you write an executable Octave script, argv will return the list of arguments passed
to the script. See Section 2.6 [Executable Octave Programs|, page 25, for an example
of how to create an executable Octave script.

program_name () [Built-in Function]
Return the last component of of the value returned by program_invocation_name.

See also: program_invocation_name.

program_invocation_name () [Built-in Function]
Return the name that was typed at the shell prompt to run Octave.
If executing a script from the command line (e.g., octave foo.m) or using an ex-
ecutable Octave script, the program name is set to the name of the script. See
Section 2.6 [Executable Octave Programs], page 25, for an example of how to create
an executable Octave script.

See also: program_name.

14

GNU Octave

Here is an example of using these functions to reproduce Octave’s command line.

print
arg_1
for i

pri
endfo
print

See Section

f ("Ys", program_name ());
ist = argv O;

= l:nargin
ntf (" %s", arg_list{il});
T

f (n\nu) ;

8.1 [Index Expressions|, page 87, for an explanation of how to properly in-

dex arrays of strings and substrings in Octave, and See Section 11.1 [Defining Functions],

page 117, fo

r information about the variable nargin.

2.1.2 Startup Files

When Octave starts, it looks for commands to execute from the files in the following list.
These files may contain any valid Octave commands, including function definitions.

octave-home/share/octave/site/m/startup/octaverc

Where octave-home is the directory in which all of Octave is installed (the
default is ‘/usr/local’). This file is provided so that changes to the default
Octave environment can be made globally for all users at your site for all ver-
sions of Octave you have installed. Some care should be taken when making
changes to this file, since all users of Octave at your site will be affected.

octave-home /share/octave/version/m/startup/octaverc

~/.octaver

.octaverc

Where octave-home is the directory in which all of Octave is installed (the
default is ‘/usr/local’), and version is the version number of Octave. This
file is provided so that changes to the default Octave environment can be made
globally for all users for a particular version of Octave. Some care should be
taken when making changes to this file, since all users of Octave at your site
will be affected.

c
This file is normally used to make personal changes to the default Octave envi-
ronment.

This file can be used to make changes to the default Octave environment for
a particular project. Octave searches for this file in the current directory after
it reads ‘~/.octaverc’. Any use of the cd command in the ‘~/.octaverc’ file
will affect the directory that Octave searches for the file ‘.octaverc’.

If you start Octave in your home directory, commands from from the file
‘~/.octaverc’ will only be executed once.

A message will be displayed as each of the startup files is read if you invoke Octave with
the —-verbose option but without the ——silent option.

2.2 Quitting Octave

exit (status) [Built-in Function]

Chapter 2: Getting Started 15

quit (status) [Built-in Function]
Exit the current Octave session. If the optional integer value status is supplied, pass
that value to the operating system as the Octave’s exit status. The default value is
Z€ro.

atexit (fcn) [Built-in Function]
Register a function to be called when Octave exits. For example,

function bye_bye ()
disp ("Bye bye");
endfunction
atexit ("bye_bye");
will print the message "Bye bye" when Octave exits.

atexit (fcn, flag) [Built-in Function]
Register or unregister a function to be called when Octave exits, depending on flag. If
flag is true, the function is registered, if flag is false, it is unregistered. For example,
after registering the function bye_bye as above,

atexit ("bye_bye", false);

will remove the function from the list and Octave will not call the function bye_by
when it exits.

Note that atexit only removes the first occurrence of a function from the list, so if a
function was placed in the list multiple times with atexit, it must also be removed
from the list multiple times.

2.3 Commands for Getting Help

The entire text of this manual is available from the Octave prompt via the command doc.
In addition, the documentation for individual user-written functions and variables is also
available via the help command. This section describes the commands used for reading
the manual and the documentation strings for user-supplied functions and variables. See
Section 11.7 [Function Files|, page 124, for more information about how to document the
functions you write.

help name [Command]|
Display the help text for name. If invoked without any arguments, help prints a list
of all the available operators and functions.

For example, the command help help prints a short message describing the help
command.

The help command can give you information about operators, but not the comma
and semicolons that are used as command separators. To get help for those, you must
type help comma or help semicolon.

See also: doc, which, lookfor.

doc function_name [Command]
Display documentation for the function function_name directly from an on-line ver-
sion of the printed manual, using the GNU Info browser. If invoked without any
arguments, the manual is shown from the beginning.

16 GNU Octave

For example, the command doc rand starts the GNU Info browser at this node in the
on-line version of the manual.

Once the GNU Info browser is running, help for using it is available using the com-
mand C-h.

See also: help.

lookfor str [Command]
lookfor -all str [Command]|
[fun, helpstring] = lookfor (str) [Function]
[fun, helpstring] = lookfor (-all’, str) [Function]

Search for the string str in all of the functions found in the function search path. By
default lookfor searches for str in the first sentence of the help string of each function
found. The entire help string of each function found in the path can be searched if
the ’-all’ argument is supplied. All searches are case insensitive.

Called with no output arguments, lookfor prints the list of matching functions to the
terminal. Otherwise the output arguments fun and helpstring define the matching
functions and the first sentence of each of their help strings.

Note that the ability of lookfor to correctly identify the first sentence of the help of
the functions is dependent on the format of the functions help. All of the functions in
Octave itself will correctly find the first sentence, but the same can not be guaranteed
for other functions. Therefore the use of the ’-all’ argument might be necessary to
find related functions that are not part of Octave.

See also: help, which.

The following function can be used to change which programs are used for displaying
the documentation, and where the documentation can be found.

val = info_file () [Built-in Function]

old_val = info_file (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the Octave info file.
The default value is "octave-home/info/octave.info", in which octave-home is
the directory where all of Octave is installed.

See also: info_program, doc, help, makeinfo_program.

val = info_program () [Built-in Function]

old_val = info_program (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the info program to run.
The default value is "octave-home /libexec/octave/version/exec/arch/info" in
which octave-home is the directory where all of Octave is installed, version is the Oc-
tave version number, and arch is the system type (for example, 1686-pc-1linux-gnu).
The default initial value may be overridden by the environment variable OCTAVE_
INFO_PROGRAM, or the command line argument --info-program NAME.

See also: info_file, doc, help, makeinfo_program.

Chapter 2: Getting Started 17

val = makeinfo_program () [Built-in Function]

old_val = makeinfo_program (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the makeinfo program
that Octave runs to format help text containing Texinfo markup commands. The
default initial value is "makeinfo".

See also: info_file, info_program, doc, help.

val = suppress_verbose_help_message () [Built-in Function]

old_val = suppress_verbose_help_message (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave will add additional
help information to the end of the output from the help command and usage messages
for built-in commands.

2.4 Command Line Editing

Octave uses the GNU readline library to provide an extensive set of command-line editing
and history features. Only the most common features are described in this manual. Please
see The GNU Readline Library manual for more information.

To insert printing characters (letters, digits, symbols, etc.), simply type the character.
Octave will insert the character at the cursor and advance the cursor forward.

Many of the command-line editing functions operate using control characters. For ex-
ample, the character Control-a moves the cursor to the beginning of the line. To type C-a,
hold down and then press (@). In the following sections, control characters such as
Control-a are written as C-a.

Another set of command-line editing functions use Meta characters. On some terminals,
you type M-u by holding down and pressing @. If your terminal does not have a
key, you can still type Meta characters using two-character sequences starting with
ESC. Thus, to enter M-u, you could type (ESC)(w. The ESC character sequences are also
allowed on terminals with real Meta keys. In the following sections, Meta characters such
as Meta-u are written as M-u.

2.4.1 Cursor Motion

The following commands allow you to position the cursor.

C-b Move back one character.

C-f Move forward one character.

DEL Delete the character to the left of the cursor.
c-d Delete the character underneath the cursor.
M-f Move forward a word.

M-b Move backward a word.

C-a Move to the start of the line.

C-e Move to the end of the line.

Cc-1 Clear the screen, reprinting the current line at the top.

18 GNU Octave

C—_

c-/ Undo the last thing that you did. You can undo all the way back to an empty
line.

M-r Undo all changes made to this line. This is like typing the ‘undo’ command

enough times to get back to the beginning.

The above table describes the most basic possible keystrokes that you need in order to
do editing of the input line. On most terminals, you can also use the arrow keys in place of
C-f and C-b to move forward and backward.

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose
convention that control keys