Go to the first, previous, next, last section, table of contents.


typedef asection

Here is the section structure:


typedef struct sec
{
        /* The name of the section; the name isn't a copy, the pointer is
        the same as that passed to bfd_make_section. */

    CONST char *name;

        /* Which section is it; 0..nth.      */

   int index;

        /* The next section in the list belonging to the BFD, or NULL. */

    struct sec *next;

        /* The field flags contains attributes of the section. Some
           flags are read in from the object file, and some are
           synthesized from other information.  */

    flagword flags;

#define SEC_NO_FLAGS   0x000

        /* Tells the OS to allocate space for this section when loading.
           This is clear for a section containing debug information
           only. */
#define SEC_ALLOC      0x001

        /* Tells the OS to load the section from the file when loading.
           This is clear for a .bss section. */
#define SEC_LOAD       0x002

        /* The section contains data still to be relocated, so there is
           some relocation information too. */
#define SEC_RELOC      0x004

#if 0   /* Obsolete ? */
#define SEC_BALIGN     0x008
#endif

        /* A signal to the OS that the section contains read only
          data. */
#define SEC_READONLY   0x010

        /* The section contains code only. */
#define SEC_CODE       0x020

        /* The section contains data only. */
#define SEC_DATA       0x040

        /* The section will reside in ROM. */
#define SEC_ROM        0x080

        /* The section contains constructor information. This section
           type is used by the linker to create lists of constructors and
           destructors used by g++. When a back end sees a symbol
           which should be used in a constructor list, it creates a new
           section for the type of name (e.g., __CTOR_LIST__), attaches
           the symbol to it, and builds a relocation. To build the lists
           of constructors, all the linker has to do is catenate all the
           sections called __CTOR_LIST__ and relocate the data
           contained within - exactly the operations it would peform on
           standard data. */
#define SEC_CONSTRUCTOR 0x100

        /* The section is a constuctor, and should be placed at the
          end of the text, data, or bss section(?). */
#define SEC_CONSTRUCTOR_TEXT 0x1100
#define SEC_CONSTRUCTOR_DATA 0x2100
#define SEC_CONSTRUCTOR_BSS  0x3100

        /* The section has contents - a data section could be
           SEC_ALLOC | SEC_HAS_CONTENTS; a debug section could be
           SEC_HAS_CONTENTS */
#define SEC_HAS_CONTENTS 0x200

        /* An instruction to the linker to not output the section
           even if it has information which would normally be written. */
#define SEC_NEVER_LOAD 0x400

        /* The section is a COFF shared library section.  This flag is
           only for the linker.  If this type of section appears in
           the input file, the linker must copy it to the output file
           without changing the vma or size.  FIXME: Although this
           was originally intended to be general, it really is COFF
           specific (and the flag was renamed to indicate this).  It
           might be cleaner to have some more general mechanism to
           allow the back end to control what the linker does with
           sections. */
#define SEC_COFF_SHARED_LIBRARY 0x800

        /* The section contains common symbols (symbols may be defined
           multiple times, the value of a symbol is the amount of
           space it requires, and the largest symbol value is the one
           used).  Most targets have exactly one of these (which we
           translate to bfd_com_section_ptr), but ECOFF has two. */
#define SEC_IS_COMMON 0x8000

        /* The section contains only debugging information.  For
           example, this is set for ELF .debug and .stab sections.
           strip tests this flag to see if a section can be
           discarded. */
#define SEC_DEBUGGING 0x10000

        /* The contents of this section are held in memory pointed to
           by the contents field.  This is checked by
           bfd_get_section_contents, and the data is retrieved from
           memory if appropriate.  */
#define SEC_IN_MEMORY 0x20000

        /* The contents of this section are to be excluded by the
           linker for executable and shared objects unless those
           objects are to be further relocated.  */
#define SEC_EXCLUDE 0x40000

       /* The contents of this section are to be sorted by the
          based on the address specified in the associated symbol
          table.  */
#define SEC_SORT_ENTRIES 0x80000

       /* When linking, duplicate sections of the same name should be
          discarded, rather than being combined into a single section as
          is usually done.  This is similar to how common symbols are
          handled.  See SEC_LINK_DUPLICATES below.  */
#define SEC_LINK_ONCE 0x100000

       /* If SEC_LINK_ONCE is set, this bitfield describes how the linker
          should handle duplicate sections.  */
#define SEC_LINK_DUPLICATES 0x600000

       /* This value for SEC_LINK_DUPLICATES means that duplicate
          sections with the same name should simply be discarded. */
#define SEC_LINK_DUPLICATES_DISCARD 0x0

       /* This value for SEC_LINK_DUPLICATES means that the linker
          should warn if there are any duplicate sections, although
          it should still only link one copy.  */
#define SEC_LINK_DUPLICATES_ONE_ONLY 0x200000

       /* This value for SEC_LINK_DUPLICATES means that the linker
          should warn if any duplicate sections are a different size.  */
#define SEC_LINK_DUPLICATES_SAME_SIZE 0x400000

       /* This value for SEC_LINK_DUPLICATES means that the linker
          should warn if any duplicate sections contain different
          contents.  */
#define SEC_LINK_DUPLICATES_SAME_CONTENTS 0x600000

       /* This section was created by the linker as part of dynamic
          relocation or other arcane processing.  It is skipped when
          going through the first-pass output, trusting that someone
          else up the line will take care of it later.  */
#define SEC_LINKER_CREATED 0x800000

       /*  End of section flags.  */

       /* Some internal packed boolean fields.  */

       /* See the vma field.  */
       unsigned int user_set_vma : 1;

       /* Whether relocations have been processed.  */
       unsigned int reloc_done : 1;

       /* A mark flag used by some of the linker backends.  */
       unsigned int linker_mark : 1;

       /* End of internal packed boolean fields.  */

       /*  The virtual memory address of the section - where it will be
           at run time.  The symbols are relocated against this.  The
           user_set_vma flag is maintained by bfd; if it's not set, the
           backend can assign addresses (for example, in a.out, where
           the default address for .data is dependent on the specific
           target and various flags).  */

   bfd_vma vma;

       /*  The load address of the section - where it would be in a
           rom image; really only used for writing section header
           information. */

   bfd_vma lma;

        /* The size of the section in bytes, as it will be output.
           contains a value even if the section has no contents (e.g., the
           size of .bss). This will be filled in after relocation */

   bfd_size_type _cooked_size;

        /* The original size on disk of the section, in bytes.  Normally this
           value is the same as the size, but if some relaxing has
           been done, then this value will be bigger.  */

   bfd_size_type _raw_size;

        /* If this section is going to be output, then this value is the
           offset into the output section of the first byte in the input
           section. E.g., if this was going to start at the 100th byte in
           the output section, this value would be 100. */

   bfd_vma output_offset;

        /* The output section through which to map on output. */

   struct sec *output_section;

        /* The alignment requirement of the section, as an exponent of 2 -
           e.g., 3 aligns to 2^3 (or 8). */

   unsigned int alignment_power;

        /* If an input section, a pointer to a vector of relocation
           records for the data in this section. */

   struct reloc_cache_entry *relocation;

        /* If an output section, a pointer to a vector of pointers to
           relocation records for the data in this section. */

   struct reloc_cache_entry **orelocation;

        /* The number of relocation records in one of the above  */

   unsigned reloc_count;

        /* Information below is back end specific - and not always used
           or updated.  */

        /* File position of section data    */

   file_ptr filepos;

        /* File position of relocation info */

   file_ptr rel_filepos;

        /* File position of line data       */

   file_ptr line_filepos;

        /* Pointer to data for applications */

   PTR userdata;

        /* If the SEC_IN_MEMORY flag is set, this points to the actual
           contents.  */
   unsigned char *contents;

        /* Attached line number information */

   alent *lineno;

        /* Number of line number records   */

   unsigned int lineno_count;

        /* When a section is being output, this value changes as more
           linenumbers are written out */

   file_ptr moving_line_filepos;

        /* What the section number is in the target world  */

   int target_index;

   PTR used_by_bfd;

        /* If this is a constructor section then here is a list of the
           relocations created to relocate items within it. */

   struct relent_chain *constructor_chain;

        /* The BFD which owns the section. */

   bfd *owner;

        /* A symbol which points at this section only */
   struct symbol_cache_entry *symbol;
   struct symbol_cache_entry **symbol_ptr_ptr;

   struct bfd_link_order *link_order_head;
   struct bfd_link_order *link_order_tail;
} asection ;

    /* These sections are global, and are managed by BFD.  The application
       and target back end are not permitted to change the values in
       these sections.  New code should use the section_ptr macros rather
       than referring directly to the const sections.  The const sections
       may eventually vanish.  */
#define BFD_ABS_SECTION_NAME "*ABS*"
#define BFD_UND_SECTION_NAME "*UND*"
#define BFD_COM_SECTION_NAME "*COM*"
#define BFD_IND_SECTION_NAME "*IND*"

    /* the absolute section */
extern const asection bfd_abs_section;
#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
    /* Pointer to the undefined section */
extern const asection bfd_und_section;
#define bfd_und_section_ptr ((asection *) &bfd_und_section)
#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
    /* Pointer to the common section */
extern const asection bfd_com_section;
#define bfd_com_section_ptr ((asection *) &bfd_com_section)
    /* Pointer to the indirect section */
extern const asection bfd_ind_section;
#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)

extern const struct symbol_cache_entry * const bfd_abs_symbol;
extern const struct symbol_cache_entry * const bfd_com_symbol;
extern const struct symbol_cache_entry * const bfd_und_symbol;
extern const struct symbol_cache_entry * const bfd_ind_symbol;
#define bfd_get_section_size_before_reloc(section) \
     (section->reloc_done ? (abort(),1): (section)->_raw_size)
#define bfd_get_section_size_after_reloc(section) \
     ((section->reloc_done) ? (section)->_cooked_size: (abort(),1))


Go to the first, previous, next, last section, table of contents.