Go to the first, previous, next, last section, table of contents.


v850 Dependent Features

Options

as supports the following additional command-line options for the V850 processor family:

-wsigned_overflow
Causes warnings to be produced when signed immediate values overflow the space available for then within their opcodes. By default this option is disabled as it is possible to receive spurious warnings due to using exact bit patterns as immediate constants.
-wunsigned_overflow
Causes warnings to be produced when unsigned immediate values overflow the space available for then within their opcodes. By default this option is disabled as it is possible to receive spurious warnings due to using exact bit patterns as immediate constants.
-mv850
Specifies that the assembled code should be marked as being targeted at the V850 processor. This allows the linker to detect attempts to link such code with code assembled for other processors.

Syntax

Special Characters

`#' is the line comment character.

Register Names

as supports the following names for registers:

general register 0
r0, zero
general register 1
r1
general register 2
r2, hp
general register 3
r3, sp
general register 4
r4, gp
general register 5
r5, tp
general register 6
r6
general register 7
r7
general register 8
r8
general register 9
r9
general register 10
r10
general register 11
r11
general register 12
r12
general register 13
r13
general register 14
r14
general register 15
r15
general register 16
r16
general register 17
r17
general register 18
r18
general register 19
r19
general register 20
r20
general register 21
r21
general register 22
r22
general register 23
r23
general register 24
r24
general register 25
r25
general register 26
r26
general register 27
r27
general register 28
r28
general register 29
r29
general register 30
r30, ep
general register 31
r31, lp
system register 0
eipc
system register 1
eipsw
system register 2
fepc
system register 3
fepsw
system register 4
ecr
system register 5
psw

Floating Point

The V850 family uses IEEE floating-point numbers.

V850 Machine Directives

.offset <expression>
Moves the offset into the current section to the specified amount.
.section "name", <type>
This is an extension to the standard .section directive. It sets the current section to be <type> and creates an alias for this section called "name".
.v850
Specifies that the assembled code should be marked as being targeted at the V850 processor. This allows the linker to detect attempts to link such code with code assembled for other processors.

Opcodes

as implements all the standard V850 opcodes.

as also implements the following pseudo ops:

hi0()
Computes the higher 16 bits of the given expression and stores it into the immediate operand field of the given instruction. For example: `mulhi hi0(here - there), r5, r6' computes the difference between the address of labels 'here' and 'there', takes the upper 16 bits of this difference, shifts it down 16 bits and then mutliplies it by the lower 16 bits in register 5, putting the result into register 6.
lo()
Computes the lower 16 bits of the given expression and stores it into the immediate operand field of the given instruction. For example: `addi lo(here - there), r5, r6' computes the difference between the address of labels 'here' and 'there', takes the lower 16 bits of this difference and adds it to register 5, putting the result into register 6.
hi()
Computes the higher 16 bits of the given expression and then adds the value of the most significant bit of the lower 16 bits of the expression and stores the result into the immediate operand field of the given instruction. For example the following code can be used to compute the address of the label 'here' and store it into register 6: `movhi hi(here), r0, r6' `movea lo(here), r6, r6' The reason for this special behaviour is that movea performs a sign extention on its immediate operand. So for example if the address of 'here' was 0xFFFFFFFF then without the special behaviour of the hi() pseudo-op the movhi instruction would put 0xFFFF0000 into r6, then the movea instruction would takes its immediate operand, 0xFFFF, sign extend it to 32 bits, 0xFFFFFFFF, and then add it into r6 giving 0xFFFEFFFF which is wrong (the fifth nibble is E). With the hi() pseudo op adding in the top bit of the lo() pseudo op, the movhi instruction actually stores 0 into r6 (0xFFFF + 1 = 0x0000), so that the movea instruction stores 0xFFFFFFFF into r6 - the right value.
sdaoff()
Computes the offset of the named variable from the start of the Small Data Area (whoes address is held in register 4, the GP register) and stores the result as a 16 bit signed value in the immediate operand field of the given instruction. For example: `ld.w sdaoff(_a_variable)[gp],r6' loads the contents of the location pointed to by the label '_a_variable' into register 6, provided that the label is located somewhere within +/- 32K of the address held in the GP register. [Note the linker assumes that the GP register contains a fixed address set to the address of the label called '__gp'. This can either be set up automatically by the linker, or specifically set by using the `--defsym __gp=<value>' command line option].
tdaoff()
Computes the offset of the named variable from the start of the Tiny Data Area (whoes address is held in register 30, the EP register) and stores the result as a 7 or 8 bit unsigned value in the immediate operand field of the given instruction. For example: `sld.w tdaoff(_a_variable)[ep],r6' loads the contents of the location pointed to by the label '_a_variable' into register 6, provided that the label is located somewhere within +256 bytes of the address held in the EP register. [Note the linker assumes that the EP register contains a fixed address set to the address of the label called '__ep'. This can either be set up automatically by the linker, or specifically set by using the `--defsym __ep=<value>' command line option].
zdaoff()
Computes the offset of the named variable from address 0 and stores the result as a 16 bit signed value in the immediate operand field of the given instruction. For example: `movea zdaoff(_a_variable),zero,r6' puts the address of the label '_a_variable' into register 6, assuming that the label is somewhere within the first 32K of memory. (Strictly speaking it also possible to access the last 32K of memory as well, as the offsets are signed).

For information on the V850 instruction set, see V850 Family 32-/16-Bit single-Chip Microcontroller Architecture Manual from NEC. Ltd.

@raisesections


Go to the first, previous, next, last section, table of contents.