[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
For a totally multi-lingual distribution, there are many things to translate beyond output messages.
gettext
offers a complete toolset for
translating messages output by C programs. Perl scripts and shell
scripts will also need to be translated. Even if there are today some hooks
by which this can be done, these hooks are not integrated as well as they
should be.
autoconf
or bison
, are able
to produce other programs (or scripts). Even if the generating
programs themselves are internationalized, the generated programs they
produce may need internationalization on their own, and this indirect
internationalization could be automated right from the generating
program. In fact, quite usually, generating and generated programs
could be internationalized independently, as the effort needed is
fairly orthogonal.
recode
program is able to reconstruct at execution.
Since these descriptions are extracted from the RFC by mechanical means,
translating them properly would require a prior translation of the RFC
itself.
gcc
to allow diacriticized characters in identifiers or use
translated keywords; `rm -i' might accept something else than
`y' or `n' for replies, etc. Even if the program will
eventually make most of its output in the foreign languages, one has
to decide whether the input syntax, option values, etc., are to be
localized or not.
As we already stressed, translation is only one aspect of locales.
Other internationalization aspects are system services and are handled
in GNU libc
. There
are many attributes that are needed to define a country's cultural
conventions. These attributes include beside the country's native
language, the formatting of the date and time, the representation of
numbers, the symbols for currency, etc. These local rules are
termed the country's locale. The locale represents the knowledge
needed to support the country's native attributes.
There are a few major areas which may vary between countries and
hence, define what a locale must describe. The following list helps
putting multi-lingual messages into the proper context of other tasks
related to locales. See the GNU libc
manual for details.
The codeset most commonly used through out the USA and most English speaking parts of the world is the ASCII codeset. However, there are many characters needed by various locales that are not found within this codeset. The 8-bit ISO 8859-1 code set has most of the special characters needed to handle the major European languages. However, in many cases, the ISO 8859-1 font is not adequate: it doesn't even handle the major European currency. Hence each locale will need to specify which codeset they need to use and will need to have the appropriate character handling routines to cope with the codeset.
The symbols used vary from country to country as does the position used by the symbol. Software needs to be able to transparently display currency figures in the native mode for each locale.
The format of date varies between locales. For example, Christmas day in 1994 is written as 12/25/94 in the USA and as 25/12/94 in Australia. Other countries might use ISO 8061 dates, etc.
Time of the day may be noted as hh:mm, hh.mm, or otherwise. Some locales require time to be specified in 24-hour mode rather than as AM or PM. Further, the nature and yearly extent of the Daylight Saving correction vary widely between countries.
Numbers can be represented differently in different locales. For example, the following numbers are all written correctly for their respective locales:
12,345.67 English 12.345,67 German 12345,67 French 1,2345.67 Asia |
Some programs could go further and use different unit systems, like English units or Metric units, or even take into account variants about how numbers are spelled in full.
The most obvious area is the language support within a locale. This is
where GNU gettext
provides the means for developers and users to
easily change the language that the software uses to communicate to
the user.
Components of locale outside of message handling are standardized in
the ISO C standard and the SUSV2 specification. GNU libc
fully implements this, and most other modern systems provide a more
or less reasonable support for at least some of the missing components.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |