There is no direct support for loops in m4
, but macros can be
recursive. There is no limit on the number of recursion levels, other
than those enforced by your hardware and operating system.
Loops can be programmed using recursion and the conditionals described previously.
There is a builtin macro, shift
, which can, among other things,
be used for iterating through the actual arguments to a macro:
shift(...)
It takes any number of arguments, and expands to all but the first argument, separated by commas, with each argument quoted.
shift(bar) => shift(foo, bar, baz) =>bar,baz
An example of the use of shift
is this macro, which reverses the
order of its arguments:
define(`reverse', `ifelse($#, 0, , $#, 1, ``$1'', `reverse(shift($@)), `$1'')') => reverse => reverse(foo) =>foo reverse(foo, bar, gnats, and gnus) =>and gnus, gnats, bar, foo
While not a very interesting macro, it does show how simple loops can be
made with shift
, ifelse
and recursion.
Here is an example of a loop macro that implements a simple forloop. It can, for example, be used for simple counting:
forloop(`i', 1, 8, `i ') =>1 2 3 4 5 6 7 8
The arguments are a name for the iteration variable, the starting value,
the final value, and the text to be expanded for each iteration. With
this macro, the macro i
is defined only within the loop. After
the loop, it retains whatever value it might have had before.
For-loops can be nested, like
forloop(`i', 1, 4, `forloop(`j', 1, 8, `(i, j) ') ') =>(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8) =>(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7) (2, 8) =>(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (3, 7) (3, 8) =>(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (4, 7) (4, 8) =>
The implementation of the forloop
macro is fairly
straightforward. The forloop
macro itself is simply a wrapper,
which saves the previous definition of the first argument, calls the
internal macro _forloop
, and re-establishes the saved definition of
the first argument.
The macro _forloop
expands the fourth argument once, and tests
to see if it is finished. If it has not finished, it increments
the iteration variable (using the predefined macro incr
,
see section Decrement and increment operators), and recurses.
Here is the actual implementation of forloop
:
define(`forloop', `pushdef(`$1', `$2')_forloop(`$1', `$2', `$3', `$4')popdef(`$1')') define(`_forloop', `$4`'ifelse($1, `$3', , `define(`$1', incr($1))_forloop(`$1', `$2', `$3', `$4')')')
Notice the careful use of quotes. Only three macro arguments are unquoted, each for its own reason. Try to find out why these three arguments are left unquoted, and see what happens if they are quoted.
Now, even though these two macros are useful, they are still not robust enough for general use. They lack even basic error handling of cases like start value less than final value, and the first argument not being a name. Correcting these errors are left as an exercise to the reader.
Go to the first, previous, next, last section, table of contents.