The functions described in this section are primarily provided as a way to efficiently perform certain low-level manipulations on floating point numbers that are represented internally using a binary radix; see section Floating Point Representation Concepts. These functions are required to have equivalent behavior even if the representation does not use a radix of 2, but of course they are unlikely to be particularly efficient in those cases.
All these functions are declared in `math.h'.
If the argument value is not zero, the return value is value
times a power of two, and is always in the range 1/2 (inclusive) to 1
(exclusive). The corresponding exponent is stored in
*exponent
; the return value multiplied by 2 raised to this
exponent equals the original number value.
For example, frexp (12.8, &exponent)
returns 0.8
and
stores 4
in exponent
.
If value is zero, then the return value is zero and
zero is stored in *exponent
.
frexp
.)
For example, ldexp (0.8, 4)
returns 12.8
.
The following functions, which come from BSD, provide facilities
equivalent to those of ldexp
and frexp
.
double
. This is
the highest integer power of 2
contained in x. The sign of
x is ignored. For example, logb (3.5)
is 1.0
and
logb (4.0)
is 2.0
.
When 2
raised to this power is divided into x, it gives a
quotient between 1
(inclusive) and 2
(exclusive).
If x is zero, the return value is minus infinity if the machine supports infinities, and a very small number if it does not. If x is infinity, the return value is infinity.
For finite x, the value returned by logb
is one less than
the value that frexp
would store into *exponent
.
scalb
function is the BSD name for ldexp
.
scalbn
is identical to scalb
, except that the exponent
n is an int
instead of a floating-point number.
scalbln
is identical to scalb
, except that the exponent
n is a long int
instead of a floating-point number.
significand
returns the mantissa of x scaled to the range
@math{[1, 2)}.
It is equivalent to scalb (x, (double) -ilogb (x))
.
This function exists mainly for use in certain standardized tests of IEEE 754 conformance.
Go to the first, previous, next, last section, table of contents.