Go to the first, previous, next, last section, table of contents.
This chapter contains information about functions for performing
mathematical computations, such as trigonometric functions. Most of
these functions have prototypes declared in the header file
`math.h'. The complex-valued functions are defined in
`complex.h'.
All mathematical functions which take a floating-point argument
have three variants, one each for double
, float
, and
long double
arguments. The double
versions are mostly
defined in ISO C89. The float
and long double
versions are from the numeric extensions to C included in ISO C99.
Which of the three versions of a function should be used depends on the
situation. For most calculations, the float
functions are the
fastest. On the other hand, the long double
functions have the
highest precision. double
is somewhere in between. It is
usually wise to pick the narrowest type that can accommodate your data.
Not all machines have a distinct long double
type; it may be the
same as double
.
The header `math.h' defines several useful mathematical constants.
All values are defined as preprocessor macros starting with M_
.
The values provided are:
M_E
-
The base of natural logarithms.
M_LOG2E
-
The logarithm to base
2
of M_E
.
M_LOG10E
-
The logarithm to base
10
of M_E
.
M_LN2
-
The natural logarithm of
2
.
M_LN10
-
The natural logarithm of
10
.
M_PI
-
Pi, the ratio of a circle's circumference to its diameter.
M_PI_2
-
Pi divided by two.
M_PI_4
-
Pi divided by four.
M_1_PI
-
The reciprocal of pi (1/pi)
M_2_PI
-
Two times the reciprocal of pi.
M_2_SQRTPI
-
Two times the reciprocal of the square root of pi.
M_SQRT2
-
The square root of two.
M_SQRT1_2
-
The reciprocal of the square root of two (also the square root of 1/2).
These constants come from the Unix98 standard and were also available in
4.4BSD; therefore they are only defined if _BSD_SOURCE
or
_XOPEN_SOURCE=500
, or a more general feature select macro, is
defined. The default set of features includes these constants.
See section Feature Test Macros.
All values are of type double
. As an extension, the GNU C
library also defines these constants with type long double
. The
long double
macros have a lowercase `l' appended to their
names: M_El
, M_PIl
, and so forth. These are only
available if _GNU_SOURCE
is defined.
Note: Some programs use a constant named PI
which has the
same value as M_PI
. This constant is not standard; it may have
appeared in some old AT&T headers, and is mentioned in Stroustrup's book
on C++. It infringes on the user's name space, so the GNU C library
does not define it. Fixing programs written to expect it is simple:
replace PI
with M_PI
throughout, or put `-DPI=M_PI'
on the compiler command line.
These are the familiar sin
, cos
, and tan
functions.
The arguments to all of these functions are in units of radians; recall
that pi radians equals 180 degrees.
The math library normally defines M_PI
to a double
approximation of pi. If strict ISO and/or POSIX compliance
are requested this constant is not defined, but you can easily define it
yourself:
#define M_PI 3.14159265358979323846264338327
You can also compute the value of pi with the expression acos
(-1.0)
.
- Function: double sin (double x)
-
- Function: float sinf (float x)
-
- Function: long double sinl (long double x)
-
These functions return the sine of x, where x is given in
radians. The return value is in the range
-1
to 1
.
- Function: double cos (double x)
-
- Function: float cosf (float x)
-
- Function: long double cosl (long double x)
-
These functions return the cosine of x, where x is given in
radians. The return value is in the range
-1
to 1
.
- Function: double tan (double x)
-
- Function: float tanf (float x)
-
- Function: long double tanl (long double x)
-
These functions return the tangent of x, where x is given in
radians.
Mathematically, the tangent function has singularities at odd multiples
of pi/2. If the argument x is too close to one of these
singularities, tan
will signal overflow.
In many applications where sin
and cos
are used, the sine
and cosine of the same angle are needed at the same time. It is more
efficient to compute them simultaneously, so the library provides a
function to do that.
- Function: void sincos (double x, double *sinx, double *cosx)
-
- Function: void sincosf (float x, float *sinx, float *cosx)
-
- Function: void sincosl (long double x, long double *sinx, long double *cosx)
-
These functions return the sine of x in
*sinx
and the
cosine of x in *cos
, where x is given in
radians. Both values, *sinx
and *cosx
, are in
the range of -1
to 1
.
This function is a GNU extension. Portable programs should be prepared
to cope with its absence.
ISO C99 defines variants of the trig functions which work on
complex numbers. The GNU C library provides these functions, but they
are only useful if your compiler supports the new complex types defined
by the standard.
(As of this writing GCC supports complex numbers, but there are bugs in
the implementation.)
- Function: complex double csin (complex double z)
-
- Function: complex float csinf (complex float z)
-
- Function: complex long double csinl (complex long double z)
-
These functions return the complex sine of z.
The mathematical definition of the complex sine is
@ifnottex
@math{sin (z) = 1/(2*i) * (exp (z*i) - exp (-z*i))}.
- Function: complex double ccos (complex double z)
-
- Function: complex float ccosf (complex float z)
-
- Function: complex long double ccosl (complex long double z)
-
These functions return the complex cosine of z.
The mathematical definition of the complex cosine is
@ifnottex
@math{cos (z) = 1/2 * (exp (z*i) + exp (-z*i))}
- Function: complex double ctan (complex double z)
-
- Function: complex float ctanf (complex float z)
-
- Function: complex long double ctanl (complex long double z)
-
These functions return the complex tangent of z.
The mathematical definition of the complex tangent is
@ifnottex
@math{tan (z) = -i * (exp (z*i) - exp (-z*i)) / (exp (z*i) + exp (-z*i))}
The complex tangent has poles at @math{pi/2 + 2n}, where @math{n} is an
integer. ctan
may signal overflow if z is too close to a
pole.
These are the usual arc sine, arc cosine and arc tangent functions,
which are the inverses of the sine, cosine and tangent functions
respectively.
- Function: double asin (double x)
-
- Function: float asinf (float x)
-
- Function: long double asinl (long double x)
-
These functions compute the arc sine of x---that is, the value whose
sine is x. The value is in units of radians. Mathematically,
there are infinitely many such values; the one actually returned is the
one between
-pi/2
and pi/2
(inclusive).
The arc sine function is defined mathematically only
over the domain -1
to 1
. If x is outside the
domain, asin
signals a domain error.
- Function: double acos (double x)
-
- Function: float acosf (float x)
-
- Function: long double acosl (long double x)
-
These functions compute the arc cosine of x---that is, the value
whose cosine is x. The value is in units of radians.
Mathematically, there are infinitely many such values; the one actually
returned is the one between
0
and pi
(inclusive).
The arc cosine function is defined mathematically only
over the domain -1
to 1
. If x is outside the
domain, acos
signals a domain error.
- Function: double atan (double x)
-
- Function: float atanf (float x)
-
- Function: long double atanl (long double x)
-
These functions compute the arc tangent of x---that is, the value
whose tangent is x. The value is in units of radians.
Mathematically, there are infinitely many such values; the one actually
returned is the one between
-pi/2
and pi/2
(inclusive).
- Function: double atan2 (double y, double x)
-
- Function: float atan2f (float y, float x)
-
- Function: long double atan2l (long double y, long double x)
-
This function computes the arc tangent of y/x, but the signs
of both arguments are used to determine the quadrant of the result, and
x is permitted to be zero. The return value is given in radians
and is in the range
-pi
to pi
, inclusive.
If x and y are coordinates of a point in the plane,
atan2
returns the signed angle between the line from the origin
to that point and the x-axis. Thus, atan2
is useful for
converting Cartesian coordinates to polar coordinates. (To compute the
radial coordinate, use hypot
; see section Exponentiation and Logarithms.)
If both x and y are zero, atan2
returns zero.
ISO C99 defines complex versions of the inverse trig functions.
- Function: complex double casin (complex double z)
-
- Function: complex float casinf (complex float z)
-
- Function: complex long double casinl (complex long double z)
-
These functions compute the complex arc sine of z---that is, the
value whose sine is z. The value returned is in radians.
Unlike the real-valued functions, casin
is defined for all
values of z.
- Function: complex double cacos (complex double z)
-
- Function: complex float cacosf (complex float z)
-
- Function: complex long double cacosl (complex long double z)
-
These functions compute the complex arc cosine of z---that is, the
value whose cosine is z. The value returned is in radians.
Unlike the real-valued functions, cacos
is defined for all
values of z.
- Function: complex double catan (complex double z)
-
- Function: complex float catanf (complex float z)
-
- Function: complex long double catanl (complex long double z)
-
These functions compute the complex arc tangent of z---that is,
the value whose tangent is z. The value is in units of radians.
- Function: double exp (double x)
-
- Function: float expf (float x)
-
- Function: long double expl (long double x)
-
These functions compute
e
(the base of natural logarithms) raised
to the power x.
If the magnitude of the result is too large to be representable,
exp
signals overflow.
- Function: double exp2 (double x)
-
- Function: float exp2f (float x)
-
- Function: long double exp2l (long double x)
-
These functions compute
2
raised to the power x.
Mathematically, exp2 (x)
is the same as exp (x * log (2))
.
- Function: double exp10 (double x)
-
- Function: float exp10f (float x)
-
- Function: long double exp10l (long double x)
-
- Function: double pow10 (double x)
-
- Function: float pow10f (float x)
-
- Function: long double pow10l (long double x)
-
These functions compute
10
raised to the power x.
Mathematically, exp10 (x)
is the same as exp (x * log (10))
.
These functions are GNU extensions. The name exp10
is
preferred, since it is analogous to exp
and exp2
.
- Function: double log (double x)
-
- Function: float logf (float x)
-
- Function: long double logl (long double x)
-
These functions compute the natural logarithm of x.
exp (log
(x))
equals x, exactly in mathematics and approximately in
C.
If x is negative, log
signals a domain error. If x
is zero, it returns negative infinity; if x is too close to zero,
it may signal overflow.
- Function: double log10 (double x)
-
- Function: float log10f (float x)
-
- Function: long double log10l (long double x)
-
These functions return the base-10 logarithm of x.
log10 (x)
equals log (x) / log (10)
.
- Function: double log2 (double x)
-
- Function: float log2f (float x)
-
- Function: long double log2l (long double x)
-
These functions return the base-2 logarithm of x.
log2 (x)
equals log (x) / log (2)
.
- Function: double logb (double x)
-
- Function: float logbf (float x)
-
- Function: long double logbl (long double x)
-
These functions extract the exponent of x and return it as a
floating-point value. If
FLT_RADIX
is two, logb
is equal
to floor (log2 (x))
, except it's probably faster.
If x is de-normalized, logb
returns the exponent x
would have if it were normalized. If x is infinity (positive or
negative), logb
returns @math{@infinity{}}. If x is zero,
logb
returns @math{@infinity{}}. It does not signal.
- Function: int ilogb (double x)
-
- Function: int ilogbf (float x)
-
- Function: int ilogbl (long double x)
-
These functions are equivalent to the corresponding
logb
functions except that they return signed integer values.
Since integers cannot represent infinity and NaN, ilogb
instead
returns an integer that can't be the exponent of a normal floating-point
number. `math.h' defines constants so you can check for this.
- Macro: int FP_ILOGB0
-
ilogb
returns this value if its argument is 0
. The
numeric value is either INT_MIN
or -INT_MAX
.
This macro is defined in ISO C99.
- Macro: int FP_ILOGBNAN
-
ilogb
returns this value if its argument is NaN
. The
numeric value is either INT_MIN
or INT_MAX
.
This macro is defined in ISO C99.
These values are system specific. They might even be the same. The
proper way to test the result of ilogb
is as follows:
i = ilogb (f);
if (i == FP_ILOGB0 || i == FP_ILOGBNAN)
{
if (isnan (f))
{
/* Handle NaN. */
}
else if (f == 0.0)
{
/* Handle 0.0. */
}
else
{
/* Some other value with large exponent,
perhaps +Inf. */
}
}
- Function: double pow (double base, double power)
-
- Function: float powf (float base, float power)
-
- Function: long double powl (long double base, long double power)
-
These are general exponentiation functions, returning base raised
to power.
Mathematically, pow
would return a complex number when base
is negative and power is not an integral value. pow
can't
do that, so instead it signals a domain error. pow
may also
underflow or overflow the destination type.
- Function: double sqrt (double x)
-
- Function: float sqrtf (float x)
-
- Function: long double sqrtl (long double x)
-
These functions return the nonnegative square root of x.
If x is negative, sqrt
signals a domain error.
Mathematically, it should return a complex number.
- Function: double cbrt (double x)
-
- Function: float cbrtf (float x)
-
- Function: long double cbrtl (long double x)
-
These functions return the cube root of x. They cannot
fail; every representable real value has a representable real cube root.
- Function: double hypot (double x, double y)
-
- Function: float hypotf (float x, float y)
-
- Function: long double hypotl (long double x, long double y)
-
These functions return
sqrt (x*x +
y*y)
. This is the length of the hypotenuse of a right
triangle with sides of length x and y, or the distance
of the point (x, y) from the origin. Using this function
instead of the direct formula is wise, since the error is
much smaller. See also the function cabs
in section Absolute Value.
- Function: double expm1 (double x)
-
- Function: float expm1f (float x)
-
- Function: long double expm1l (long double x)
-
These functions return a value equivalent to
exp (x) - 1
.
They are computed in a way that is accurate even if x is
near zero--a case where exp (x) - 1
would be inaccurate owing
to subtraction of two numbers that are nearly equal.
- Function: double log1p (double x)
-
- Function: float log1pf (float x)
-
- Function: long double log1pl (long double x)
-
These functions returns a value equivalent to
log (1 + x)
.
They are computed in a way that is accurate even if x is
near zero.
ISO C99 defines complex variants of some of the exponentiation and
logarithm functions.
- Function: complex double cexp (complex double z)
-
- Function: complex float cexpf (complex float z)
-
- Function: complex long double cexpl (complex long double z)
-
These functions return
e
(the base of natural
logarithms) raised to the power of z.
Mathematically, this corresponds to the value
@ifnottex
@math{exp (z) = exp (creal (z)) * (cos (cimag (z)) + I * sin (cimag (z)))}
- Function: complex double clog (complex double z)
-
- Function: complex float clogf (complex float z)
-
- Function: complex long double clogl (complex long double z)
-
These functions return the natural logarithm of z.
Mathematically, this corresponds to the value
@ifnottex
@math{log (z) = log (cabs (z)) + I * carg (z)}
clog
has a pole at 0, and will signal overflow if z equals
or is very close to 0. It is well-defined for all other values of
z.
- Function: complex double clog10 (complex double z)
-
- Function: complex float clog10f (complex float z)
-
- Function: complex long double clog10l (complex long double z)
-
These functions return the base 10 logarithm of the complex value
z. Mathematically, this corresponds to the value
@ifnottex
@math{log (z) = log10 (cabs (z)) + I * carg (z)}
These functions are GNU extensions.
- Function: complex double csqrt (complex double z)
-
- Function: complex float csqrtf (complex float z)
-
- Function: complex long double csqrtl (complex long double z)
-
These functions return the complex square root of the argument z. Unlike
the real-valued functions, they are defined for all values of z.
- Function: complex double cpow (complex double base, complex double power)
-
- Function: complex float cpowf (complex float base, complex float power)
-
- Function: complex long double cpowl (complex long double base, complex long double power)
-
These functions return base raised to the power of
power. This is equivalent to
cexp (y * clog (x))
The functions in this section are related to the exponential functions;
see section Exponentiation and Logarithms.
- Function: double sinh (double x)
-
- Function: float sinhf (float x)
-
- Function: long double sinhl (long double x)
-
These functions return the hyperbolic sine of x, defined
mathematically as
(exp (x) - exp (-x)) / 2
. They
may signal overflow if x is too large.
- Function: double cosh (double x)
-
- Function: float coshf (float x)
-
- Function: long double coshl (long double x)
-
These function return the hyperbolic cosine of x,
defined mathematically as
(exp (x) + exp (-x)) / 2
.
They may signal overflow if x is too large.
- Function: double tanh (double x)
-
- Function: float tanhf (float x)
-
- Function: long double tanhl (long double x)
-
These functions return the hyperbolic tangent of x,
defined mathematically as
sinh (x) / cosh (x)
.
They may signal overflow if x is too large.
There are counterparts for the hyperbolic functions which take
complex arguments.
- Function: complex double csinh (complex double z)
-
- Function: complex float csinhf (complex float z)
-
- Function: complex long double csinhl (complex long double z)
-
These functions return the complex hyperbolic sine of z, defined
mathematically as
(exp (z) - exp (-z)) / 2
.
- Function: complex double ccosh (complex double z)
-
- Function: complex float ccoshf (complex float z)
-
- Function: complex long double ccoshl (complex long double z)
-
These functions return the complex hyperbolic cosine of z, defined
mathematically as
(exp (z) + exp (-z)) / 2
.
- Function: complex double ctanh (complex double z)
-
- Function: complex float ctanhf (complex float z)
-
- Function: complex long double ctanhl (complex long double z)
-
These functions return the complex hyperbolic tangent of z,
defined mathematically as
csinh (z) / ccosh (z)
.
- Function: double asinh (double x)
-
- Function: float asinhf (float x)
-
- Function: long double asinhl (long double x)
-
These functions return the inverse hyperbolic sine of x---the
value whose hyperbolic sine is x.
- Function: double acosh (double x)
-
- Function: float acoshf (float x)
-
- Function: long double acoshl (long double x)
-
These functions return the inverse hyperbolic cosine of x---the
value whose hyperbolic cosine is x. If x is less than
1
, acosh
signals a domain error.
- Function: double atanh (double x)
-
- Function: float atanhf (float x)
-
- Function: long double atanhl (long double x)
-
These functions return the inverse hyperbolic tangent of x---the
value whose hyperbolic tangent is x. If the absolute value of
x is greater than
1
, atanh
signals a domain error;
if it is equal to 1, atanh
returns infinity.
- Function: complex double casinh (complex double z)
-
- Function: complex float casinhf (complex float z)
-
- Function: complex long double casinhl (complex long double z)
-
These functions return the inverse complex hyperbolic sine of
z---the value whose complex hyperbolic sine is z.
- Function: complex double cacosh (complex double z)
-
- Function: complex float cacoshf (complex float z)
-
- Function: complex long double cacoshl (complex long double z)
-
These functions return the inverse complex hyperbolic cosine of
z---the value whose complex hyperbolic cosine is z. Unlike
the real-valued functions, there are no restrictions on the value of z.
- Function: complex double catanh (complex double z)
-
- Function: complex float catanhf (complex float z)
-
- Function: complex long double catanhl (complex long double z)
-
These functions return the inverse complex hyperbolic tangent of
z---the value whose complex hyperbolic tangent is z. Unlike
the real-valued functions, there are no restrictions on the value of
z.
These are some more exotic mathematical functions which are sometimes
useful. Currently they only have real-valued versions.
- Function: double erf (double x)
-
- Function: float erff (float x)
-
- Function: long double erfl (long double x)
-
erf
returns the error function of x. The error
function is defined as
@ifnottex
erf (x) = 2/sqrt(pi) * integral from 0 to x of exp(-t^2) dt
- Function: double erfc (double x)
-
- Function: float erfcf (float x)
-
- Function: long double erfcl (long double x)
-
erfc
returns 1.0 - erf(x)
, but computed in a
fashion that avoids round-off error when x is large.
- Function: double lgamma (double x)
-
- Function: float lgammaf (float x)
-
- Function: long double lgammal (long double x)
-
lgamma
returns the natural logarithm of the absolute value of
the gamma function of x. The gamma function is defined as
@ifnottex
gamma (x) = integral from 0 to @infinity{} of t^(x-1) e^-t dt
The sign of the gamma function is stored in the global variable
signgam, which is declared in `math.h'. It is 1
if
the intermediate result was positive or zero, or -1
if it was
negative.
To compute the real gamma function you can use the tgamma
function or you can compute the values as follows:
lgam = lgamma(x);
gam = signgam*exp(lgam);
The gamma function has singularities at the non-positive integers.
lgamma
will raise the zero divide exception if evaluated at a
singularity.
- Function: double lgamma_r (double x, int *signp)
-
- Function: float lgammaf_r (float x, int *signp)
-
- Function: long double lgammal_r (long double x, int *signp)
-
lgamma_r
is just like lgamma
, but it stores the sign of
the intermediate result in the variable pointed to by signp
instead of in the signgam global. This means it is reentrant.
- Function: double gamma (double x)
-
- Function: float gammaf (float x)
-
- Function: long double gammal (long double x)
-
These functions exist for compatibility reasons. They are equivalent to
lgamma
etc. It is better to use lgamma
since for one the
name reflects better the actual computation, moreover lgamma
is
standardized in ISO C99 while gamma
is not.
- Function: double tgamma (double x)
-
- Function: float tgammaf (float x)
-
- Function: long double tgammal (long double x)
-
tgamma
applies the gamma function to x. The gamma
function is defined as
@ifnottex
gamma (x) = integral from 0 to @infinity{} of t^(x-1) e^-t dt
This function was introduced in ISO C99.
- Function: double j0 (double x)
-
- Function: float j0f (float x)
-
- Function: long double j0l (long double x)
-
j0
returns the Bessel function of the first kind of order 0 of
x. It may signal underflow if x is too large.
- Function: double j1 (double x)
-
- Function: float j1f (float x)
-
- Function: long double j1l (long double x)
-
j1
returns the Bessel function of the first kind of order 1 of
x. It may signal underflow if x is too large.
- Function: double jn (int n, double x)
-
- Function: float jnf (int n, float x)
-
- Function: long double jnl (int n, long double x)
-
jn
returns the Bessel function of the first kind of order
n of x. It may signal underflow if x is too large.
- Function: double y0 (double x)
-
- Function: float y0f (float x)
-
- Function: long double y0l (long double x)
-
y0
returns the Bessel function of the second kind of order 0 of
x. It may signal underflow if x is too large. If x
is negative, y0
signals a domain error; if it is zero,
y0
signals overflow and returns @math{-@infinity}.
- Function: double y1 (double x)
-
- Function: float y1f (float x)
-
- Function: long double y1l (long double x)
-
y1
returns the Bessel function of the second kind of order 1 of
x. It may signal underflow if x is too large. If x
is negative, y1
signals a domain error; if it is zero,
y1
signals overflow and returns @math{-@infinity}.
- Function: double yn (int n, double x)
-
- Function: float ynf (int n, float x)
-
- Function: long double ynl (int n, long double x)
-
yn
returns the Bessel function of the second kind of order n of
x. It may signal underflow if x is too large. If x
is negative, yn
signals a domain error; if it is zero,
yn
signals overflow and returns @math{-@infinity}.
This section lists the known errors of the functions in the math
library. Errors are measured in "units of the last place". This is a
measure for the relative error. For a number @math{z} with the
representation @math{d.d...d@mul{}2^e} (we assume IEEE
floating-point numbers with base 2) the ULP is represented by
@ifnottex
|d.d...d - (z / 2^e)| / 2^(p - 1)
where @math{p} is the number of bits in the mantissa of the
floating-point number representation. Ideally the error for all
functions is always less than 0.5ulps. Using rounding bits this is also
possible and normally implemented for the basic operations. To achieve
the same for the complex math functions requires a lot more work and
this was not spend so far.
Therefore many of the functions in the math library have errors. The
table lists the maximum error for each function which is exposed by one
of the existing tests in the test suite. It is tried to cover as much
as possible and really list the maximum error (or at least a ballpark
figure) but this is often not achieved due to the large search space.
The table lists the ULP values for different architectures. Different
architectures have different results since their hardware support for
floating-point operations varies and also the existing hardware support
is different.
@multitable {nexttowardf} {1000 + i 1000} {1000 + i 1000} {1000 + i 1000} {1000 + i 1000} {1000 + i 1000} {1000 + i 1000} {1000 + i 1000} {1000 + i 1000} {1000 + i 1000} {1000 + i 1000} {1000 + i 1000} {1000 + i 1000}
Function @tab s390/fpu @tab sh/sh4/fpu @tab ia64/fpu @tab sparc/sparc64/fpu @tab sparc/sparc32/fpu @tab powerpc/fpu @tab mips/fpu @tab m68k/fpu @tab ix86 @tab Generic @tab arm @tab alpha/fpu
acosf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
acos @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
acosl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab 1 @tab 1150 @tab - @tab - @tab -
acoshf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
acosh @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
acoshl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab 1 @tab 1 @tab - @tab - @tab -
asinf @tab 2 @tab 2 @tab - @tab 2 @tab 2 @tab 2 @tab 2 @tab - @tab - @tab - @tab 2 @tab 2
asin @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 1 @tab 1
asinl @tab - @tab - @tab 1 @tab - @tab - @tab - @tab - @tab 1 @tab 1 @tab - @tab - @tab -
asinhf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
asinh @tab - @tab - @tab 1 @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
asinhl @tab - @tab - @tab 656 @tab - @tab - @tab - @tab - @tab 14 @tab 656 @tab - @tab - @tab -
atanf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
atan @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
atanl @tab - @tab - @tab - @tab 1 @tab - @tab - @tab - @tab - @tab 549 @tab - @tab - @tab -
atanhf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
atanh @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 1 @tab 1
atanhl @tab - @tab - @tab 1605 @tab - @tab - @tab - @tab - @tab - @tab 1605 @tab - @tab - @tab -
atan2f @tab 4 @tab 4 @tab - @tab 4.0000 @tab 4.0000 @tab 4 @tab 4 @tab - @tab - @tab - @tab - @tab 4
atan2 @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
atan2l @tab - @tab - @tab - @tab 1 @tab - @tab - @tab - @tab - @tab 549 @tab - @tab - @tab -
cabsf @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 1 @tab 1
cabs @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 1 @tab - @tab 1 @tab 1
cabsl @tab - @tab - @tab 560 @tab - @tab - @tab - @tab - @tab 1 @tab 560 @tab - @tab - @tab -
cacosf @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 2 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 2 @tab 1 + i 2 @tab - @tab 1 + i 1 @tab 1 + i 1
cacos @tab 1 + i 0 @tab 1 + i 0 @tab 1 + i 0 @tab 1 + i 0 @tab 1 + i 0 @tab 1 + i 0 @tab 1 + i 0 @tab 1 + i 0 @tab 1 + i 0 @tab - @tab 1 + i 0 @tab 1 + i 0
cacosl @tab - @tab - @tab 151 + i 329 @tab 0 + i 3 @tab - @tab - @tab - @tab 1 + i 1 @tab 151 + i 329 @tab - @tab - @tab -
cacoshf @tab 7 + i 3 @tab 7 + i 3 @tab 7 + i 3 @tab 7 + i 3 @tab 7 + i 3 @tab 7 + i 3 @tab 7 + i 3 @tab 7 + i 0 @tab 4 + i 4 @tab - @tab 7 + i 3 @tab 7 + i 3
cacosh @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab - @tab 1 + i 1 @tab 1 + i 1
cacoshl @tab - @tab - @tab 328 + i 151 @tab 5 + i 1 @tab - @tab - @tab - @tab 6 + i 2 @tab 328 + i 151 @tab - @tab - @tab -
cargf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
carg @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
cargl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
casinf @tab 2 + i 1 @tab 2 + i 1 @tab 2 + i 2 @tab 2 + i 1 @tab 2 + i 1 @tab 2 + i 1 @tab 2 + i 1 @tab 2 + i 2 @tab 2 + i 2 @tab - @tab 2 + i 1 @tab 2 + i 1
casin @tab 3 + i 0 @tab 3 + i 0 @tab 3 + i 0 @tab 3 + i 0 @tab 3 + i 0 @tab 3 + i 0 @tab 3 + i 0 @tab 3 + i 0 @tab 3 + i 0 @tab - @tab 3 + i 0 @tab 3 + i 0
casinl @tab - @tab - @tab 603 + i 329 @tab 1 + i 3 @tab - @tab - @tab - @tab 1 + i 1 @tab 603 + i 329 @tab - @tab - @tab -
casinhf @tab 1 + i 6 @tab 1 + i 6 @tab 1 + i 6 @tab 1 + i 6 @tab 1 + i 6 @tab 1 + i 6 @tab 1 + i 6 @tab 19 + i 2 @tab 1 + i 6 @tab - @tab 1 + i 6 @tab 1 + i 6
casinh @tab 5 + i 3 @tab 5 + i 3 @tab 5 + i 3 @tab 5 + i 3 @tab 5 + i 3 @tab 5 + i 3 @tab 5 + i 3 @tab 6 + i 13 @tab 5 + i 3 @tab - @tab 5 + i 3 @tab 5 + i 3
casinhl @tab - @tab - @tab 892 + i 12 @tab 4 + i 2 @tab - @tab - @tab - @tab 6 + i 7 @tab 892 + i 12 @tab - @tab - @tab -
catanf @tab 4 + i 1 @tab 4 + i 1 @tab 4 + i 1 @tab 4 + i 1 @tab 4 + i 1 @tab 4 + i 1 @tab 4 + i 1 @tab 0 + i 1 @tab 0 + i 1 @tab - @tab 4 + i 1 @tab 4 + i 1
catan @tab 0 + i 1 @tab 0 + i 1 @tab 0 + i 1 @tab 0 + i 1 @tab 0 + i 1 @tab 0 + i 1 @tab 0 + i 1 @tab 0 + i 1 @tab 0 + i 1 @tab - @tab 0 + i 1 @tab 0 + i 1
catanl @tab - @tab - @tab 251 + i 474 @tab 0 + i 1 @tab - @tab - @tab - @tab 1 + i 7 @tab 251 + i 474 @tab - @tab - @tab -
catanhf @tab 1 + i 6 @tab 1 + i 6 @tab 0 + i 6 @tab 1 + i 6 @tab 1 + i 6 @tab 0 + i 6 @tab 1 + i 6 @tab - @tab 1 + i 0 @tab - @tab 1 + i 6 @tab 1 + i 6
catanh @tab 4 + i 1 @tab 4 + i 1 @tab 4 + i 1 @tab 4 + i 1 @tab 4 + i 1 @tab 4 + i 1 @tab 4 + i 1 @tab - @tab 2 + i 0 @tab - @tab 4 + i 1 @tab 4 + i 1
catanhl @tab - @tab - @tab 66 + i 447 @tab - @tab - @tab - @tab - @tab 2 + i 2 @tab 66 + i 447 @tab - @tab - @tab -
cbrtf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
cbrt @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 1 @tab 1
cbrtl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab 948 @tab 716 @tab - @tab - @tab -
ccosf @tab 0 + i 1 @tab 0 + i 1 @tab 1 + i 1 @tab 0 + i 1 @tab 0 + i 1 @tab 0 + i 1 @tab 0 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab - @tab 0 + i 1 @tab 0 + i 1
ccos @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 0 + i 1 @tab 1 + i 1 @tab - @tab 1 + i 1 @tab 1 + i 1
ccosl @tab - @tab - @tab 5 + i 1901 @tab - @tab - @tab - @tab - @tab 0 + i 1 @tab 5 + i 1901 @tab - @tab - @tab -
ccoshf @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 3 + i 1 @tab 1 + i 1 @tab - @tab 1 + i 1 @tab 1 + i 1
ccosh @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 0 @tab 1 + i 1 @tab - @tab 1 + i 1 @tab 1 + i 1
ccoshl @tab - @tab - @tab 1467 + i 1183 @tab - @tab - @tab - @tab - @tab 1 + i 2 @tab 1467 + i 1183 @tab - @tab - @tab -
ceilf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
ceil @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
ceill @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
cexpf @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 3 + i 2 @tab 1 + i 0 @tab - @tab 1 + i 1 @tab 1 + i 1
cexp @tab 1 + i 0 @tab 1 + i 0 @tab 1 + i 0 @tab 1 + i 0 @tab 1 + i 0 @tab 1 + i 0 @tab 1 + i 0 @tab - @tab - @tab - @tab 1 + i 0 @tab 1 + i 0
cexpl @tab - @tab - @tab 940 + i 1067 @tab 1 + i 1 @tab - @tab - @tab - @tab 2 + i 0 @tab 940 + i 1067 @tab - @tab - @tab -
cimagf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
cimag @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
cimagl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
clogf @tab 0 + i 3 @tab 0 + i 3 @tab 0 + i 3 @tab 0 + i 3 @tab 0 + i 3 @tab 0 + i 3 @tab 0 + i 3 @tab - @tab - @tab - @tab 0 + i 3 @tab 0 + i 3
clog @tab 0 + i 1 @tab 0 + i 1 @tab 0 + i 1 @tab 0 + i 1 @tab 0 + i 1 @tab 0 + i 1 @tab 0 + i 1 @tab - @tab - @tab - @tab 0 + i 1 @tab 0 + i 1
clogl @tab - @tab - @tab 0 + i 1 @tab - @tab - @tab - @tab - @tab 0 + i 1 @tab 0 + i 1 @tab - @tab - @tab -
clog10f @tab 1 + i 5 @tab 1 + i 5 @tab 1 + i 5 @tab 1 + i 5 @tab 1 + i 5 @tab 1 + i 5 @tab 1 + i 5 @tab 1 + i 1 @tab 1 + i 1 @tab - @tab 1 + i 5 @tab 1 + i 5
clog10 @tab 1 + i 1 @tab 1 + i 1 @tab 2 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 2 + i 1 @tab - @tab 1 + i 1 @tab 1 + i 1
clog10l @tab - @tab - @tab 1402 + i 186 @tab - @tab - @tab - @tab - @tab 1 + i 3 @tab 1403 + i 186 @tab - @tab - @tab -
conjf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
conj @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
conjl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
copysignf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
copysign @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
copysignl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
cosf @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 1 @tab 1
cos @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab - @tab 2 @tab 2
cosl @tab - @tab - @tab 529 @tab 1 @tab - @tab - @tab - @tab 1 @tab 529 @tab - @tab - @tab -
coshf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
cosh @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
coshl @tab - @tab - @tab 2 @tab - @tab - @tab - @tab - @tab 2 @tab 309 @tab - @tab - @tab -
cpowf @tab 4 + i 2 @tab 4 + i 2 @tab 5 + i 2.5333 @tab 4 + i 2 @tab 4 + i 2 @tab 4 + i 2 @tab 4 + i 2 @tab 1 + i 6 @tab 4 + i 2.5333 @tab - @tab 4 + i 2 @tab 4 + i 2
cpow @tab 1 + i 1.1031 @tab 1 + i 1.1031 @tab 1 + i 1.104 @tab 1 + i 1.1031 @tab 1 + i 1.1031 @tab 1 + i 2 @tab 1 + i 1.1031 @tab 1 + i 1.103 @tab 1 + i 1.104 @tab - @tab 1 + i 1.1031 @tab 1 + i 1.1031
cpowl @tab - @tab - @tab 1 + i 4 @tab 3 + i 0.9006 @tab - @tab - @tab - @tab 5 + i 2 @tab 2 + i 9 @tab - @tab - @tab -
cprojf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
cproj @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
cprojl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
crealf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
creal @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
creall @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
csinf @tab 0 + i 1 @tab 0 + i 1 @tab 1 + i 1 @tab 0 + i 1 @tab 0 + i 1 @tab 0 + i 1 @tab 0 + i 1 @tab 1 + i 1 @tab - @tab - @tab 0 + i 1 @tab 0 + i 1
csin @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
csinl @tab - @tab - @tab 966 + i 168 @tab - @tab - @tab - @tab - @tab - @tab 966 + i 168 @tab - @tab - @tab -
csinhf @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab - @tab 1 + i 1 @tab 1 + i 1
csinh @tab 0 + i 1 @tab 0 + i 1 @tab 1 + i 1 @tab 0 + i 1 @tab 0 + i 1 @tab 0 + i 1 @tab 0 + i 1 @tab - @tab 1 + i 1 @tab - @tab 0 + i 1 @tab 0 + i 1
csinhl @tab - @tab - @tab 413 + i 477 @tab - @tab - @tab - @tab - @tab 1 + i 2 @tab 413 + i 477 @tab - @tab - @tab -
csqrtf @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 2 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 0 @tab - @tab - @tab 1 + i 1 @tab 1 + i 1
csqrt @tab 1 + i 0 @tab 1 + i 0 @tab 1 + i 0 @tab 1 + i 0 @tab 1 + i 0 @tab 1 + i 0 @tab 1 + i 0 @tab - @tab 1 + i 0 @tab - @tab 1 + i 0 @tab 1 + i 0
csqrtl @tab - @tab - @tab 237 + i 128 @tab 1 + i 1 @tab - @tab - @tab - @tab - @tab 237 + i 128 @tab - @tab - @tab -
ctanf @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 0 @tab 1 + i 1 @tab - @tab 1 + i 1 @tab 1 + i 1
ctan @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 1 @tab 1 + i 0 @tab 1 + i 1 @tab - @tab 1 + i 1 @tab 1 + i 1
ctanl @tab - @tab - @tab 690 + i 367 @tab - @tab - @tab - @tab - @tab 439 + i 2 @tab 690 + i 367 @tab - @tab - @tab -
ctanhf @tab 2 + i 1 @tab 2 + i 1 @tab 2 + i 2 @tab 2 + i 1 @tab 2 + i 1 @tab 2 + i 1 @tab 2 + i 1 @tab 1 + i 0 @tab 1 + i 1 @tab - @tab 2 + i 1 @tab 2 + i 1
ctanh @tab 2 + i 2 @tab 2 + i 2 @tab 2 + i 2 @tab 2 + i 2 @tab 2 + i 2 @tab 2 + i 2 @tab 2 + i 2 @tab 0 + i 1 @tab 0 + i 1 @tab - @tab 2 + i 2 @tab 2 + i 2
ctanhl @tab - @tab - @tab 286 + i 3074 @tab - @tab - @tab - @tab - @tab 2 + i 25 @tab 286 + i 3074 @tab - @tab - @tab -
erff @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
erf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
erfl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
erfcf @tab 12 @tab 12 @tab 12 @tab 12 @tab 12 @tab 12 @tab 12 @tab 11 @tab 12 @tab - @tab 12 @tab 12
erfc @tab 24 @tab 24 @tab 24 @tab 24 @tab 24 @tab 24 @tab 24 @tab 24 @tab 24 @tab - @tab 24 @tab 24
erfcl @tab - @tab - @tab 12 @tab - @tab - @tab - @tab - @tab 12 @tab 36 @tab - @tab - @tab -
expf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
exp @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
expl @tab - @tab - @tab 412 @tab - @tab - @tab - @tab - @tab - @tab 412 @tab - @tab - @tab -
exp10f @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab - @tab - @tab - @tab 2 @tab 2
exp10 @tab 6 @tab 6 @tab 6 @tab 6 @tab 6 @tab 6 @tab 6 @tab 1 @tab 1 @tab - @tab 6 @tab 6
exp10l @tab - @tab - @tab 1182 @tab 1 @tab - @tab - @tab - @tab 1 @tab 1182 @tab - @tab - @tab -
exp2f @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
exp2 @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
exp2l @tab - @tab - @tab 462 @tab - @tab - @tab - @tab - @tab - @tab 462 @tab - @tab - @tab -
expm1f @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab - @tab - @tab 1 @tab 1
expm1 @tab - @tab - @tab 1 @tab 1 @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
expm1l @tab - @tab - @tab 825 @tab - @tab - @tab - @tab - @tab 1 @tab 825 @tab - @tab - @tab -
fabsf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
fabs @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
fabsl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
fdimf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
fdim @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
fdiml @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
floorf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
floor @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
floorl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
fmaf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
fma @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
fmal @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
fmaxf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
fmax @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
fmaxl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
fminf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
fmin @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
fminl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
fmodf @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 1 @tab 1
fmod @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab - @tab 2 @tab 2
fmodl @tab - @tab - @tab 4096 @tab 2 @tab - @tab - @tab - @tab 1 @tab 4096 @tab - @tab - @tab -
frexpf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
frexp @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
frexpl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
gammaf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
gamma @tab - @tab - @tab 1 @tab - @tab - @tab - @tab - @tab - @tab 1 @tab - @tab - @tab -
gammal @tab - @tab - @tab 1 @tab - @tab - @tab - @tab - @tab 1 @tab 1 @tab - @tab - @tab -
hypotf @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 1 @tab 1
hypot @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 1 @tab - @tab 1 @tab 1
hypotl @tab - @tab - @tab 560 @tab - @tab - @tab - @tab - @tab 1 @tab 560 @tab - @tab - @tab -
ilogbf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
ilogb @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
ilogbl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
j0f @tab 2 @tab 2 @tab 1 @tab 2 @tab 2 @tab 1 @tab 2 @tab 1 @tab 1 @tab - @tab 2 @tab 2
j0 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 1 @tab 2 @tab - @tab 2 @tab 2
j0l @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
j1f @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 1 @tab - @tab 2 @tab 2
j1 @tab 1 @tab 1 @tab 2 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 2 @tab - @tab 1 @tab 1
j1l @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab 2 @tab 2 @tab - @tab - @tab -
jnf @tab 4 @tab 4 @tab 4 @tab 4 @tab 4 @tab 4 @tab 4 @tab 11 @tab 2 @tab - @tab 4 @tab 4
jn @tab 6 @tab 6 @tab 6 @tab 6 @tab 6 @tab 6 @tab 6 @tab 4 @tab 4 @tab - @tab 6 @tab 6
jnl @tab - @tab - @tab 2 @tab - @tab - @tab - @tab - @tab 2 @tab 2 @tab - @tab - @tab -
lgammaf @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab - @tab 2 @tab 2
lgamma @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 1 @tab 1
lgammal @tab - @tab - @tab 1 @tab - @tab - @tab - @tab - @tab 1 @tab 1 @tab - @tab - @tab -
lrintf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
lrint @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
lrintl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
llrintf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
llrint @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
llrintl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
logf @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 1 @tab 1
log @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 1 @tab 1
logl @tab - @tab - @tab 2341 @tab 1 @tab - @tab - @tab - @tab 2 @tab 2341 @tab - @tab - @tab -
log10f @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 1 @tab 1
log10 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 1 @tab 1
log10l @tab - @tab - @tab 2033 @tab - @tab - @tab - @tab - @tab 1 @tab 2033 @tab - @tab - @tab -
log1pf @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 1 @tab 1
log1p @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 1 @tab 1
log1pl @tab - @tab - @tab 585 @tab - @tab - @tab - @tab - @tab 2 @tab 585 @tab - @tab - @tab -
log2f @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 1 @tab 1
log2 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 1 @tab 1
log2l @tab - @tab - @tab 1688 @tab - @tab - @tab - @tab - @tab 1 @tab 1688 @tab - @tab - @tab -
logbf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
logb @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
logbl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
lroundf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
lround @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
lroundl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
llroundf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
llround @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
llroundl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
modff @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
modf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
modfl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
nearbyintf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
nearbyint @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
nearbyintl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
nextafterf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
nextafter @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
nextafterl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
nexttowardf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
nexttoward @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
nexttowardl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
powf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
pow @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
powl @tab - @tab - @tab 725 @tab - @tab - @tab - @tab - @tab 1 @tab 725 @tab - @tab - @tab -
remainderf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
remainder @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
remainderl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
remquof @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
remquo @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
remquol @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
rintf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
rint @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
rintl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
roundf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
round @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
roundl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
scalbf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
scalb @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
scalbl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
scalbnf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
scalbn @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
scalbnl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
scalblnf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
scalbln @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
scalblnl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
sinf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
sin @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
sinl @tab - @tab - @tab 627 @tab - @tab - @tab - @tab - @tab 1 @tab 627 @tab - @tab - @tab -
sincosf @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 1 @tab 1
sincos @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 1 @tab 1
sincosl @tab - @tab - @tab 627 @tab 1 @tab - @tab - @tab - @tab 1 @tab 627 @tab - @tab - @tab -
sinhf @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 1 @tab 1
sinh @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab - @tab - @tab 1 @tab 1
sinhl @tab - @tab - @tab 1029 @tab - @tab - @tab - @tab - @tab - @tab 1029 @tab - @tab - @tab -
sqrtf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
sqrt @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
sqrtl @tab - @tab - @tab 489 @tab 1 @tab - @tab - @tab - @tab - @tab 489 @tab - @tab - @tab -
tanf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
tan @tab 0.5 @tab 0.5 @tab 0.5 @tab 0.5 @tab 0.5 @tab 1 @tab 0.5 @tab 0.5 @tab 0.5 @tab - @tab 0.5 @tab 0.5
tanl @tab - @tab - @tab 1401 @tab 1 @tab - @tab - @tab - @tab 1 @tab 1401 @tab - @tab - @tab -
tanhf @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab - @tab - @tab 1 @tab 1
tanh @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab - @tab - @tab 1 @tab 1
tanhl @tab - @tab - @tab 521 @tab - @tab - @tab - @tab - @tab - @tab 521 @tab - @tab - @tab -
tgammaf @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab - @tab 1 @tab 1
tgamma @tab 1 @tab 1 @tab 2 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 2 @tab - @tab 1 @tab 1
tgammal @tab - @tab - @tab 1 @tab - @tab - @tab - @tab - @tab 1 @tab 2 @tab - @tab - @tab -
truncf @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
trunc @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
truncl @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab - @tab -
y0f @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 1 @tab 2 @tab 1 @tab - @tab 1 @tab 1
y0 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 3 @tab - @tab 2 @tab 2
y0l @tab - @tab - @tab 2 @tab - @tab - @tab - @tab - @tab 2 @tab 2 @tab - @tab - @tab -
y1f @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab - @tab 2 @tab 2
y1 @tab 3 @tab 3 @tab 3 @tab 3 @tab 3 @tab 3 @tab 3 @tab 1 @tab 3 @tab - @tab 3 @tab 3
y1l @tab - @tab - @tab 1 @tab - @tab - @tab - @tab - @tab 2 @tab 2 @tab - @tab - @tab -
ynf @tab 2 @tab 2 @tab 3 @tab 2 @tab 2 @tab 2 @tab 2 @tab 2 @tab 3 @tab - @tab 2 @tab 2
yn @tab 3 @tab 3 @tab 6 @tab 3 @tab 3 @tab 3 @tab 3 @tab 6 @tab 6 @tab - @tab 3 @tab 3
ynl @tab - @tab - @tab 7 @tab - @tab - @tab - @tab - @tab 7 @tab 7 @tab - @tab - @tab -
This section describes the GNU facilities for generating a series of
pseudo-random numbers. The numbers generated are not truly random;
typically, they form a sequence that repeats periodically, with a period
so large that you can ignore it for ordinary purposes. The random
number generator works by remembering a seed value which it uses
to compute the next random number and also to compute a new seed.
Although the generated numbers look unpredictable within one run of a
program, the sequence of numbers is exactly the same from one run
to the next. This is because the initial seed is always the same. This
is convenient when you are debugging a program, but it is unhelpful if
you want the program to behave unpredictably. If you want a different
pseudo-random series each time your program runs, you must specify a
different seed each time. For ordinary purposes, basing the seed on the
current time works well.
You can obtain repeatable sequences of numbers on a particular machine type
by specifying the same initial seed value for the random number
generator. There is no standard meaning for a particular seed value;
the same seed, used in different C libraries or on different CPU types,
will give you different random numbers.
The GNU library supports the standard ISO C random number functions
plus two other sets derived from BSD and SVID. The BSD and ISO C
functions provide identical, somewhat limited functionality. If only a
small number of random bits are required, we recommend you use the
ISO C interface, rand
and srand
. The SVID functions
provide a more flexible interface, which allows better random number
generator algorithms, provides more random bits (up to 48) per call, and
can provide random floating-point numbers. These functions are required
by the XPG standard and therefore will be present in all modern Unix
systems.
This section describes the random number functions that are part of
the ISO C standard.
To use these facilities, you should include the header file
`stdlib.h' in your program.
- Macro: int RAND_MAX
-
The value of this macro is an integer constant representing the largest
value the
rand
function can return. In the GNU library, it is
2147483647
, which is the largest signed integer representable in
32 bits. In other libraries, it may be as low as 32767
.
- Function: int rand (void)
-
The
rand
function returns the next pseudo-random number in the
series. The value ranges from 0
to RAND_MAX
.
- Function: void srand (unsigned int seed)
-
This function establishes seed as the seed for a new series of
pseudo-random numbers. If you call
rand
before a seed has been
established with srand
, it uses the value 1
as a default
seed.
To produce a different pseudo-random series each time your program is
run, do srand (time (0))
.
POSIX.1 extended the C standard functions to support reproducible random
numbers in multi-threaded programs. However, the extension is badly
designed and unsuitable for serious work.
- Function: int rand_r (unsigned int *seed)
-
This function returns a random number in the range 0 to
RAND_MAX
just as rand
does. However, all its state is stored in the
seed argument. This means the RNG's state can only have as many
bits as the type unsigned int
has. This is far too few to
provide a good RNG.
If your program requires a reentrant RNG, we recommend you use the
reentrant GNU extensions to the SVID random number generator. The
POSIX.1 interface should only be used when the GNU extensions are not
available.
This section describes a set of random number generation functions that
are derived from BSD. There is no advantage to using these functions
with the GNU C library; we support them for BSD compatibility only.
The prototypes for these functions are in `stdlib.h'.
- Function: long int random (void)
-
This function returns the next pseudo-random number in the sequence.
The value returned ranges from
0
to RAND_MAX
.
Note: Temporarily this function was defined to return a
int32_t
value to indicate that the return value always contains
32 bits even if long int
is wider. The standard demands it
differently. Users must always be aware of the 32-bit limitation,
though.
- Function: void srandom (unsigned int seed)
-
The
srandom
function sets the state of the random number
generator based on the integer seed. If you supply a seed value
of 1
, this will cause random
to reproduce the default set
of random numbers.
To produce a different set of pseudo-random numbers each time your
program runs, do srandom (time (0))
.
- Function: void * initstate (unsigned int seed, void *state, size_t size)
-
The
initstate
function is used to initialize the random number
generator state. The argument state is an array of size
bytes, used to hold the state information. It is initialized based on
seed. The size must be between 8 and 256 bytes, and should be a
power of two. The bigger the state array, the better.
The return value is the previous value of the state information array.
You can use this value later as an argument to setstate
to
restore that state.
- Function: void * setstate (void *state)
-
The
setstate
function restores the random number state
information state. The argument must have been the result of
a previous call to initstate or setstate.
The return value is the previous value of the state information array.
You can use this value later as an argument to setstate
to
restore that state.
If the function fails the return value is NULL
.
The four functions described so far in this section all work on a state
which is shared by all threads. The state is not directly accessible to
the user and can only be modified by these functions. This makes it
hard to deal with situations where each thread should have its own
pseudo-random number generator.
The GNU C library contains four additional functions which contain the
state as an explicit parameter and therefore make it possible to handle
thread-local PRNGs. Beside this there are no difference. In fact, the
four functions already discussed are implemented internally using the
following interfaces.
The `stdlib.h' header contains a definition of the following type:
- Data Type: struct random_data
-
Objects of type struct random_data
contain the information
necessary to represent the state of the PRNG. Although a complete
definition of the type is present the type should be treated as opaque.
The functions modifying the state follow exactly the already described
functions.
- Function: int random_r (struct random_data *restrict buf, int32_t *restrict result)
-
The
random_r
function behaves exactly like the random
function except that it uses and modifies the state in the object
pointed to by the first parameter instead of the global state.
- Function: int srandom_r (unsigned int seed, struct random_data *buf)
-
The
srandom_r
function behaves exactly like the srandom
function except that it uses and modifies the state in the object
pointed to by the second parameter instead of the global state.
- Function: int initstate_r (unsigned int seed, char *restrict statebuf, size_t statelen, struct random_data *restrict buf)
-
The
initstate_r
function behaves exactly like the initstate
function except that it uses and modifies the state in the object
pointed to by the fourth parameter instead of the global state.
- Function: int setstate_r (char *restrict statebuf, struct random_data *restrict buf)
-
The
setstate_r
function behaves exactly like the setstate
function except that it uses and modifies the state in the object
pointed to by the first parameter instead of the global state.
The C library on SVID systems contains yet another kind of random number
generator functions. They use a state of 48 bits of data. The user can
choose among a collection of functions which return the random bits
in different forms.
Generally there are two kinds of function. The first uses a state of
the random number generator which is shared among several functions and
by all threads of the process. The second requires the user to handle
the state.
All functions have in common that they use the same congruential
formula with the same constants. The formula is
Y = (a * X + c) mod m
where X is the state of the generator at the beginning and
Y the state at the end. a
and c
are constants
determining the way the generator works. By default they are
a = 0x5DEECE66D = 25214903917
c = 0xb = 11
but they can also be changed by the user. m
is of course 2^48
since the state consists of a 48-bit array.
The prototypes for these functions are in `stdlib.h'.
- Function: double drand48 (void)
-
This function returns a
double
value in the range of 0.0
to 1.0
(exclusive). The random bits are determined by the global
state of the random number generator in the C library.
Since the double
type according to IEEE 754 has a 52-bit
mantissa this means 4 bits are not initialized by the random number
generator. These are (of course) chosen to be the least significant
bits and they are initialized to 0
.
- Function: double erand48 (unsigned short int xsubi[3])
-
This function returns a
double
value in the range of 0.0
to 1.0
(exclusive), similarly to drand48
. The argument is
an array describing the state of the random number generator.
This function can be called subsequently since it updates the array to
guarantee random numbers. The array should have been initialized before
initial use to obtain reproducible results.
- Function: long int lrand48 (void)
-
The
lrand48
function returns an integer value in the range of
0
to 2^31
(exclusive). Even if the size of the long
int
type can take more than 32 bits, no higher numbers are returned.
The random bits are determined by the global state of the random number
generator in the C library.
- Function: long int nrand48 (unsigned short int xsubi[3])
-
This function is similar to the
lrand48
function in that it
returns a number in the range of 0
to 2^31
(exclusive) but
the state of the random number generator used to produce the random bits
is determined by the array provided as the parameter to the function.
The numbers in the array are updated afterwards so that subsequent calls
to this function yield different results (as is expected of a random
number generator). The array should have been initialized before the
first call to obtain reproducible results.
- Function: long int mrand48 (void)
-
The
mrand48
function is similar to lrand48
. The only
difference is that the numbers returned are in the range -2^31
to
2^31
(exclusive).
- Function: long int jrand48 (unsigned short int xsubi[3])
-
The
jrand48
function is similar to nrand48
. The only
difference is that the numbers returned are in the range -2^31
to
2^31
(exclusive). For the xsubi
parameter the same
requirements are necessary.
The internal state of the random number generator can be initialized in
several ways. The methods differ in the completeness of the
information provided.
- Function: void srand48 (long int seedval)
-
The
srand48
function sets the most significant 32 bits of the
internal state of the random number generator to the least
significant 32 bits of the seedval parameter. The lower 16 bits
are initialized to the value 0x330E
. Even if the long
int
type contains more than 32 bits only the lower 32 bits are used.
Owing to this limitation, initialization of the state of this
function is not very useful. But it makes it easy to use a construct
like srand48 (time (0))
.
A side-effect of this function is that the values a
and c
from the internal state, which are used in the congruential formula,
are reset to the default values given above. This is of importance once
the user has called the lcong48
function (see below).
- Function: unsigned short int * seed48 (unsigned short int seed16v[3])
-
The
seed48
function initializes all 48 bits of the state of the
internal random number generator from the contents of the parameter
seed16v. Here the lower 16 bits of the first element of
see16v initialize the least significant 16 bits of the internal
state, the lower 16 bits of seed16v[1]
initialize the mid-order
16 bits of the state and the 16 lower bits of seed16v[2]
initialize the most significant 16 bits of the state.
Unlike srand48
this function lets the user initialize all 48 bits
of the state.
The value returned by seed48
is a pointer to an array containing
the values of the internal state before the change. This might be
useful to restart the random number generator at a certain state.
Otherwise the value can simply be ignored.
As for srand48
, the values a
and c
from the
congruential formula are reset to the default values.
There is one more function to initialize the random number generator
which enables you to specify even more information by allowing you to
change the parameters in the congruential formula.
- Function: void lcong48 (unsigned short int param[7])
-
The
lcong48
function allows the user to change the complete state
of the random number generator. Unlike srand48
and
seed48
, this function also changes the constants in the
congruential formula.
From the seven elements in the array param the least significant
16 bits of the entries param[0]
to param[2]
determine the initial state, the least significant 16 bits of
param[3]
to param[5]
determine the 48 bit
constant a
and param[6]
determines the 16-bit value
c
.
All the above functions have in common that they use the global
parameters for the congruential formula. In multi-threaded programs it
might sometimes be useful to have different parameters in different
threads. For this reason all the above functions have a counterpart
which works on a description of the random number generator in the
user-supplied buffer instead of the global state.
Please note that it is no problem if several threads use the global
state if all threads use the functions which take a pointer to an array
containing the state. The random numbers are computed following the
same loop but if the state in the array is different all threads will
obtain an individual random number generator.
The user-supplied buffer must be of type struct drand48_data
.
This type should be regarded as opaque and not manipulated directly.
- Function: int drand48_r (struct drand48_data *buffer, double *result)
-
This function is equivalent to the
drand48
function with the
difference that it does not modify the global random number generator
parameters but instead the parameters in the buffer supplied through the
pointer buffer. The random number is returned in the variable
pointed to by result.
The return value of the function indicates whether the call succeeded.
If the value is less than 0
an error occurred and errno is
set to indicate the problem.
This function is a GNU extension and should not be used in portable
programs.
- Function: int erand48_r (unsigned short int xsubi[3], struct drand48_data *buffer, double *result)
-
The
erand48_r
function works like erand48
, but in addition
it takes an argument buffer which describes the random number
generator. The state of the random number generator is taken from the
xsubi
array, the parameters for the congruential formula from the
global random number generator data. The random number is returned in
the variable pointed to by result.
The return value is non-negative if the call succeeded.
This function is a GNU extension and should not be used in portable
programs.
- Function: int lrand48_r (struct drand48_data *buffer, double *result)
-
This function is similar to
lrand48
, but in addition it takes a
pointer to a buffer describing the state of the random number generator
just like drand48
.
If the return value of the function is non-negative the variable pointed
to by result contains the result. Otherwise an error occurred.
This function is a GNU extension and should not be used in portable
programs.
- Function: int nrand48_r (unsigned short int xsubi[3], struct drand48_data *buffer, long int *result)
-
The
nrand48_r
function works like nrand48
in that it
produces a random number in the range 0
to 2^31
. But instead
of using the global parameters for the congruential formula it uses the
information from the buffer pointed to by buffer. The state is
described by the values in xsubi.
If the return value is non-negative the variable pointed to by
result contains the result.
This function is a GNU extension and should not be used in portable
programs.
- Function: int mrand48_r (struct drand48_data *buffer, double *result)
-
This function is similar to
mrand48
but like the other reentrant
functions it uses the random number generator described by the value in
the buffer pointed to by buffer.
If the return value is non-negative the variable pointed to by
result contains the result.
This function is a GNU extension and should not be used in portable
programs.
- Function: int jrand48_r (unsigned short int xsubi[3], struct drand48_data *buffer, long int *result)
-
The
jrand48_r
function is similar to jrand48
. Like the
other reentrant functions of this function family it uses the
congruential formula parameters from the buffer pointed to by
buffer.
If the return value is non-negative the variable pointed to by
result contains the result.
This function is a GNU extension and should not be used in portable
programs.
Before any of the above functions are used the buffer of type
struct drand48_data
should be initialized. The easiest way to do
this is to fill the whole buffer with null bytes, e.g. by
memset (buffer, '\0', sizeof (struct drand48_data));
Using any of the reentrant functions of this family now will
automatically initialize the random number generator to the default
values for the state and the parameters of the congruential formula.
The other possibility is to use any of the functions which explicitly
initialize the buffer. Though it might be obvious how to initialize the
buffer from looking at the parameter to the function, it is highly
recommended to use these functions since the result might not always be
what you expect.
- Function: int srand48_r (long int seedval, struct drand48_data *buffer)
-
The description of the random number generator represented by the
information in buffer is initialized similarly to what the function
srand48
does. The state is initialized from the parameter
seedval and the parameters for the congruential formula are
initialized to their default values.
If the return value is non-negative the function call succeeded.
This function is a GNU extension and should not be used in portable
programs.
- Function: int seed48_r (unsigned short int seed16v[3], struct drand48_data *buffer)
-
This function is similar to
srand48_r
but like seed48
it
initializes all 48 bits of the state from the parameter seed16v.
If the return value is non-negative the function call succeeded. It
does not return a pointer to the previous state of the random number
generator like the seed48
function does. If the user wants to
preserve the state for a later re-run s/he can copy the whole buffer
pointed to by buffer.
This function is a GNU extension and should not be used in portable
programs.
- Function: int lcong48_r (unsigned short int param[7], struct drand48_data *buffer)
-
This function initializes all aspects of the random number generator
described in buffer with the data in param. Here it is
especially true that the function does more than just copying the
contents of param and buffer. More work is required and
therefore it is important to use this function rather than initializing
the random number generator directly.
If the return value is non-negative the function call succeeded.
This function is a GNU extension and should not be used in portable
programs.
If an application uses many floating point functions it is often the case
that the cost of the function calls themselves is not negligible.
Modern processors can often execute the operations themselves
very fast, but the function call disrupts the instruction pipeline.
For this reason the GNU C Library provides optimizations for many of the
frequently-used math functions. When GNU CC is used and the user
activates the optimizer, several new inline functions and macros are
defined. These new functions and macros have the same names as the
library functions and so are used instead of the latter. In the case of
inline functions the compiler will decide whether it is reasonable to
use them, and this decision is usually correct.
This means that no calls to the library functions may be necessary, and
can increase the speed of generated code significantly. The drawback is
that code size will increase, and the increase is not always negligible.
There are two kind of inline functions: Those that give the same result
as the library functions and others that might not set errno
and
might have a reduced precision and/or argument range in comparison with
the library functions. The latter inline functions are only available
if the flag -ffast-math
is given to GNU CC.
In cases where the inline functions and macros are not wanted the symbol
__NO_MATH_INLINES
should be defined before any system header is
included. This will ensure that only library functions are used. Of
course, it can be determined for each file in the project whether
giving this option is preferable or not.
Not all hardware implements the entire IEEE 754 standard, and even
if it does there may be a substantial performance penalty for using some
of its features. For example, enabling traps on some processors forces
the FPU to run un-pipelined, which can more than double calculation time.
Go to the first, previous, next, last section, table of contents.